Publications by authors named "Donavon McConn"

This publication details the successful use of FBDD (fragment-based drug discovery) principles in the invention of a novel covalent Bruton's tyrosine kinase inhibitor, which ultimately became the Takeda Pharmaceuticals clinical candidate TAK-020. Described herein are the discovery of the fragment 5-phenyl-2,4-dihydro-3-1,2,4-triazol-3-one, the subsequent optimization of this hit molecule to the candidate, and synthesis and performance in pharmacodynamic and efficacy models along with direct biophysical comparison of TAK-020 with other clinical-level assets and the marketed drug Ibrutinib.

View Article and Find Full Text PDF

The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound ).

View Article and Find Full Text PDF

Dual inhibition of angiotensin-converting enzyme (ACE) and neprilysin (NEP) by drugs such as omapatrilat produces superior antihypertensive efficacy relative to ACE inhibitors but is associated with a higher risk of life-threatening angioedema due to bradykinin elevations. We hypothesized that dual AT (angiotensin II type 1 receptor) blockade and NEP inhibition with a single molecule would produce similar antihypertensive efficacy to omapatrilat without the risk of angioedema since ACE (the rate limiting enzyme in bradykinin metabolism) would remain uninhibited. Merging the structures of losartan (an AT antagonist) and thiorphan (a NEP inhibitor) led to the discovery of a novel series of orally active, dual AT antagonist/NEP inhibitors (ARNIs) exemplified by compound (TD-0212).

View Article and Find Full Text PDF
Article Synopsis
  • A study evaluated how different doses of ritonavir affect the pharmacokinetics of bupropion in healthy volunteers, with subjects receiving two doses of ritonavir over a 30-day period.
  • High doses of ritonavir (600 mg) significantly decreased bupropion levels by 62-67%, while low doses (100 mg) resulted in a smaller decrease of 21-22%.
  • The findings suggest that when taking ritonavir, bupropion dosage may need adjustment, especially at higher ritonavir doses, but the maximum daily dose of bupropion should not be exceeded.
View Article and Find Full Text PDF

There are documented clinical drug-drug interactions between bupropion and the CYP2D6-metabolized drug desipramine resulting in marked (5-fold) increases in desipramine exposure. This finding was unexpected as CYP2D6 does not play a significant role in bupropion clearance, and bupropion and its major active metabolite, hydroxybupropion, are not strong CYP2D6 inhibitors in vitro. The aims of this study were to investigate whether bupropion's reductive metabolites, threohydrobupropion and erythrohydrobupropion, contribute to the drug interaction with desipramine.

View Article and Find Full Text PDF

Purpose: A series of melanocortin-4 receptor (MC4R) agonists, developed for use as anti-obesity agents, were found to have unusual pharmacokinetic behavior arising from excessive retention in the liver, with nearly undetectable levels in plasma following oral administration in mice. This work investigates the molecular basis of the prolonged liver retention that provided a rational basis for the design of an analog with improved behavior.

Materials And Methods: The livers of mice were harvested and techniques were utilized to fractionate them into pools differentially enriched in organelles.

View Article and Find Full Text PDF

We report the synthesis and biological activity of a series of 2-cyano-4-fluoro-1-thiovalylpyrrolidine inhibitors of DPP-IV. Within this series, compound 19 provided a potent, selective, and orally active DPP-IV inhibitor which demonstrated a very long duration of action in both rat and dog.

View Article and Find Full Text PDF

CYP3A4 and CYP3A5 exhibit significant overlap in substrate specificity but can differ in product regioselectivity and formation activity. To further explore this issue, we compared the kinetics of product formation for eight different substrates, using heterologously expressed CYP3A4 and CYP3A5 and phenotyped human liver microsomes. Both enzymes displayed allosteric behavior toward six of the substrates.

View Article and Find Full Text PDF

The objectives of this study were to characterize and compare the reversible inhibition and time-dependent inactivation of cytochromes P450 3A4 and 3A5 (CYP3A4 and CYP3A5) by erythromycin, diltiazem, and nicardipine. In the following experiments, we used cDNA-expressed CYP3A Supersomes and CYP3A-phenotyped human liver microsomes. We estimated the apparent constants for reversible inhibition (Ki(app) and IC50) and the irreversible kinetic constants (KI and kinact) for time-dependent inhibition.

View Article and Find Full Text PDF

Drug:drug interactions continue to be an obstacle for the pharmaceutical industry in the development of potential drug candidates. Considering the number of compounds that have been withdrawn from the market due to drug:drug interactions (e.g.

View Article and Find Full Text PDF