Publications by authors named "Donatien Lefebvre"

A is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described in the literature, but only five named "classical" enterotoxins are commonly investigated in FPOs due to lack of specific routine analytical techniques.

View Article and Find Full Text PDF

Staphylococcal enterotoxins preformed in food are the causative agents of staphylococcal food poisoning outbreaks (SFPO). In this study we characterised in depth two coagulase-positive non-pigmented staphylococci involved in two independent outbreaks that occurred in France. While indistinguishable from Staphylococcus aureus using PCR methods and growth phenotype comparisons, both isolates were identified as Staphylococcus argenteus by whole genome sequencing.

View Article and Find Full Text PDF

Staphylococcal food poisoning outbreaks are caused by the ingestion of food contaminated with staphylococcal enterotoxins (SEs). Among the 27 SEs described in the literature to date, only a few can be detected using immuno-enzymatic-based methods that are strongly dependent on the availability of antibodies. Liquid chromatography, coupled to high-resolution mass spectrometry (LC-HRMS), has, therefore, been put forward as a relevant complementary method, but only for the detection of a limited number of enterotoxins.

View Article and Find Full Text PDF

We addressed here the need for improved sensitivity of top-down mass spectrometry for identification, differentiation, and absolute quantification of sequence variants of SEA, a bacterial toxin produced by and regularly involved in food poisoning outbreaks (FPO). We combined immunoaffinity enrichment, a protein internal standard, and optimized acquisition conditions, either by full-scan high-resolution mass spectrometry (HRMS) or multiplex parallel reaction monitoring (PRM) mode. Deconvolution of full-scan HRMS signal and PRM detection of variant-specific fragment ions allowed confident identification of each SEA variant.

View Article and Find Full Text PDF

Staphylococcal enterotoxins (SEs) are responsible for frequent food poisoning outbreaks worldwide. Specific identification of SEs is crucial for confirmation of food poisoning, tracking of the incriminated foods or food ingredients, and removal from the food chain. Here, we report on a new food testing protocol addressing the challenge of low abundance of SEs in contaminated food and high sequence heterogeneity.

View Article and Find Full Text PDF

Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly . Since newly identified SEs have been shown to have emetic properties and the genes encoding them have been found in food involved in poisoning outbreaks, it is necessary to have reliable tools to prove the presence of the toxins themselves, to clarify the role played by these non-classical SEs, and to precisely document SFP outbreaks. We have produced and characterized monoclonal antibodies directed specifically against SE type G, H or I (SEG, SEH or SEI respectively) or SEA.

View Article and Find Full Text PDF