This study assessed the methane production from food waste (FW) with dominant components of Meat (MFW), Fruit &Veg (VFW), Grain (GFW), Dairy (DFW), and the mixed feed of these components (MixFW). The high protein and lipid content FW (HPLFW) of MFW, DFW, and MixFW showed the methane yields of 337.0 ± 3.
View Article and Find Full Text PDFX-ray-based computed tomography is a well established technique for determining the three-dimensional structure of an object from its two-dimensional projections. In the past few decades, there have been significant advancements in the brightness and detector technology of tomography instruments at synchrotron sources. These advancements have led to the emergence of new observations and discoveries, with improved capabilities such as faster frame rates, larger fields of view, higher resolution and higher dimensionality.
View Article and Find Full Text PDFOne of the brilliant ideas of John Spence when he saw the first diffraction patterns from the Linac Coherent Light Source was that one could solve the crystallographic phase problem by utilising the intensities between Bragg peaks. Because these intensities are due to the Fourier transform of the shape of the crystal, the approach came to be known as "shape-transform phasing." Shape-transform phasing was developed over the next ten years and formed the basis for many other interesting ideas and pursuits.
View Article and Find Full Text PDFBackground: Rezafungin is a novel, once-weekly echinocandin. EUCAST rezafungin MIC testing has been associated with a good separation of WT and target gene mutant isolates in single-centre studies, but an unacceptable inter-laboratory MIC variation has prevented EUCAST breakpoint setting. This has been attributed to non-specific binding to surfaces across microtitre plates, pipettes, reservoirs, etc.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is common in patients with RA and leads to significant morbidity and mortality. No randomized, placebo-controlled data are available that support the role of immunosuppression to treat RA-associated ILD, despite being widely used in clinical practice.
Research Question: How does immunosuppression impact pulmonary function trajectory in a multisite retrospective cohort of patients with RA-associated ILD?
Study Design And Methods: Patients with RA who started treatment for ILD with mycophenolate, azathioprine, or rituximab were identified retrospectively from five ILD centers.
X-ray tomography is widely used for three-dimensional structure determination in many areas of science, from the millimeter to the nanometer scale. The resolution and quality of the 3D reconstruction is limited by the availability of alignment parameters that correct for the mechanical shifts of the sample or sample stage for the images that constitute a scan. In this paper we describe an algorithm for marker-free, fully automated and accurately aligned and reconstructed X-ray tomography data.
View Article and Find Full Text PDFThe current era of COVID-19 is characterized by emerging variants of concern, waning vaccine- and natural infection-induced immunity, debate over the timing and necessity of vaccine boosting, and the emergence of post-acute sequelae of SARS-CoV-2 infection. As a result, there is an ongoing need for research to promote understanding of the immunology of both natural infection and prevention, especially as SARS-CoV-2 immunology is a rapidly changing field, with new questions arising as the pandemic continues to grow in complexity. The next phase of COVID-19 immunology research will need focus on clearer characterization of the immune processes defining acute illness, development of a better understanding of the immunologic processes driving protracted symptoms and prolonged recovery (ie, post-acute sequelae of SARS-CoV-2 infection), and a growing focus on the impact of therapeutic and prophylactic interventions on the long-term consequences of SARS-CoV-2 infection.
View Article and Find Full Text PDFA method for recovering complex structure factors from many simultaneously excited Bragg beam in- tensities is described. The method is applied to simulated transmission electron diffraction data over a wide range of crystal thickness and beam energies. The method is based on iterated projections between structure and scattering matrices, which are related by a matrix unit ary transformation, exponential, which we invert.
View Article and Find Full Text PDFThe multitiered iterative phasing (MTIP) algorithm is used to determine the biological structures of macromolecules from fluctuation scattering data. It is an iterative algorithm that reconstructs the electron density of the sample by matching the computed fluctuation X-ray scattering data to the external observations, and by simultaneously enforcing constraints in real and Fourier space. This paper presents the first ever MTIP algorithm acceleration efforts on contemporary graphics processing units (GPUs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments.
View Article and Find Full Text PDFWe report a patient with connective tissue disease who developed modest severe acute respiratory syndrome coronavirus 2 receptor binding domain-specific antibody levels and a lack of neutralization capacity, despite having received 3 mRNA coronavirus disease 2019 vaccines and holding anti-B-cell therapy for >7 months before vaccination. The patient developed virus-specific T-cell responses.
View Article and Find Full Text PDFWe describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally in 70 individuals with PCR-confirmed SARS-CoV-2 infection. Participants represent a spectrum of illness and recovery, including some with persistent viral shedding in saliva and many experiencing post-acute sequelae of SARS-CoV-2 infection (PASC). T cell responses remain stable for up to 9 months.
View Article and Find Full Text PDFInterpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement.
View Article and Find Full Text PDFA detailed understanding of long-term SARS-CoV-2-specific T cell responses and their relationship to humoral immunity and markers of inflammation in diverse groups of individuals representing the spectrum of COVID-19 illness and recovery is urgently needed. Data are also lacking as to whether and how adaptive immune and inflammatory responses differ in individuals that experience persistent symptomatic sequelae months following acute infection compared to those with complete, rapid recovery. We measured SARS-CoV-2-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally up to 9 months following infection in a diverse group of 70 individuals with PCR-confirmed SARS-CoV-2 infection.
View Article and Find Full Text PDFA method for recovering complex structure factors from many simultaneously excited Bragg beam in- tensities is described. The method is applied to simulated transmission electron diffraction data over a wide range of crystal thickness and beam energies. The method is based on iterated projections between structure and scattering matrices, which are related by a matrix unit ary transformation, exponential, which we invert.
View Article and Find Full Text PDFAn iterated projection algorithm (N-Phaser) is developed that reconstructs a scattering potential from N-beam multiple Bragg scattered intensities. The method may be used to eliminate multiple scattering artifacts from electron diffraction data, solving the phase problem and increasing the thicknesses of samples used in materials science, solid-state chemistry, and small molecule crystallography. For high-energy transmission electron diffraction, we show that the algorithm recovers accurate complex structure factors from a wide range of thicknesses, orientations, and relativistic beam energies, and does not require known thickness or atomic-resolution data if sufficient multiple scattering occurs.
View Article and Find Full Text PDFPurpose Of Review: Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood.
View Article and Find Full Text PDFDiffraction patterns from small protein crystals illuminated by highly coherent X-rays often contain measurable interference signals between Bragg peaks. This coherent `shape transform' signal introduces enough additional information to allow the molecular densities to be determined from the diffracted intensities directly, without prior information or resolution restrictions. However, the various correlations amongst molecular occupancies/vacancies at the crystal surface result in a subtle yet critical problem in shape transform phasing whereby the sublattices of symmetry-related molecules exhibit a form of partial coherence amongst lattice sites when an average is taken over many crystal patterns.
View Article and Find Full Text PDFMetal release from the deposition of sulfide-containing tailings in seawater was investigated using a batch reaction experiment inside a temperature and dissolved oxygen-controlled chamber. Two hundred grams of tailings from a porphyry Cu-Au and a sediment-hosted Cu deposit were submerged in 1.8 L synthetic seawater.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which X-ray solution scattering data are collected from particles in solution using ultrashort X-ray exposures generated by a free-electron laser (FEL). FXS experiments overcome the low data-to-parameter ratios associated with traditional solution scattering measurements by providing several orders of magnitude more information in the final processed data. Here we demonstrate the practical feasibility of FEL-based FXS on a biological multiple-particle system and describe data-processing techniques required to extract robust FXS data and significantly reduce the required number of snapshots needed by introducing an iterative noise-filtering technique.
View Article and Find Full Text PDFFluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100 000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot.
View Article and Find Full Text PDFMethodist Debakey Cardiovasc J
October 2018
Adipositas cordis is a rare cardiomyopathy characterized by diffuse fatty infiltration of the ventricular myocardium or interventricular septum. This occurs without myocardial cell destruction, unlike arrhythmogenic right ventricular cardiomyopathy. A 40-year-old obese woman was found to have a II/VI systolic murmur that worsened with standing.
View Article and Find Full Text PDFThe purpose of this article was to review the pathophysiology, imaging features, and imaging pitfalls of noncongenital ventricular septal defects (VSDs). Noncongenital VSDs can result from ischemic heart disease, trauma, infection, and iatrogenic causes. Ischemic VSDs typically involve the posterior descending or left anterior descending vascular territories and are commonly seen in the apical septum or basal-mid inferoseptum.
View Article and Find Full Text PDFBackground: While echinocandins demonstrate excellent efficacy against species in disseminated infections and demonstrate potent minimal inhibitory concentration (MIC) values under standard susceptibility testing conditions, investigation under conditions relevant to the vaginal environment was needed. We assessed the antifungal activity and time-kill kinetics of the novel echinocandin rezafungin (formerly CD101) under such conditions, against species relevant to vulvovaginal candidiasis (VVC).
Methods: Susceptibility testing of fluconazole-susceptible and fluconazole-resistant , , , , and was performed in RPMI at pH 7.