Publications by authors named "Donatella Regano"

Objective: Molecular pathways governing blood vessel patterning are vital to vertebrate development. Because of their ability to counteract proangiogenic factors, antiangiogenic secreted Sema3 (class 3 semaphorins) control embryonic vascular morphogenesis. However, if and how Sema3 may play a role in the control of extraembryonic vascular development is presently unknown.

View Article and Find Full Text PDF

Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently, Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion receptors.

View Article and Find Full Text PDF

Cancer development, progression, and metastasis are highly dependent on angiogenesis. The use of antiangiogenic drugs has been proposed as a novel strategy to interfere with tumor growth, but cancer cells respond by developing strategies to escape these treatments. In particular, animal models show that antiangiogenic drugs currently used in clinical settings reduce tumor tissue oxygenation and trigger molecular events that foster cancer resistance to therapy.

View Article and Find Full Text PDF

The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1.

View Article and Find Full Text PDF