Publications by authors named "Donatella Mattia"

Article Synopsis
  • Treadmill-based Robotic-Assisted Gait Training (t-RAGT) enhances rehabilitation by using robots to help patients walk, but the role of physiotherapists and the type of feedback provided to patients needs further exploration.
  • This study examined the effects of different types of visual feedback (chart, emoticon, game) and levels of physiotherapist-patient interaction (low, medium, high) on patients' attention and emotional engagement using eye-tracking and EEG methods.
  • Results indicated that both the type of feedback and the level of interaction influenced patients' visual attention and emotional response, particularly regarding the therapist's involvement and the areas of interest monitored during the t-RAGT sessions.
View Article and Find Full Text PDF

Brain-Computer Interfaces targeting post-stroke recovery of the upper limb employ mainly electroencephalography to decode movement-related brain activation. Recently hybrid systems including muscular activity were introduced. We compared the motor task discrimination abilities of three different features, namely event-related desynchronization/synchronization (ERD/ERS) and movement-related cortical potential (MRCP) as brain-derived features and cortico-muscular coherence (CMC) as a hybrid brain-muscle derived feature, elicited in 13 healthy subjects and 13 stroke patients during the execution/attempt of two simple hand motor tasks (finger extension and grasping) commonly employed in upper limb rehabilitation protocols.

View Article and Find Full Text PDF

Technology-based approaches for upper limb (UL) motor rehabilitation after stroke are mostly designed for severely affected patients to increase their recovery chances. However, the available randomized controlled trials (RCTs) focused on the efficacy of technology-based interventions often include patients with a wide range of motor impairment. This scoping review aims at overviewing the actual severity of stroke patients enrolled in RCTs that claim to specifically address UL severe motor impairment.

View Article and Find Full Text PDF

Disorders of consciousness (DoC) are characterized by alteration in arousal and/or awareness commonly caused by severe brain injury. There exists a consensus on adopting advanced neuroimaging and electrophysiological procedures to improve diagnosis/prognosis of DoC patients. Currently, these procedures are prevalently applied in a research-oriented context and their translation into clinical practice is yet to come.

View Article and Find Full Text PDF

Background: Traumatic cervical spinal cord injury (SCI) results in reduced sensorimotor abilities that strongly impact on the achievement of daily living activities involving hand/arm function. Among several technology-based rehabilitative approaches, Brain-Computer Interfaces (BCIs) which enable the modulation of electroencephalographic sensorimotor rhythms, are promising tools to promote the recovery of hand function after SCI. The "DiSCIoser" study proposes a BCI-supported motor imagery (MI) training to engage the sensorimotor system and thus facilitate the neuroplasticity to eventually optimize upper limb sensorimotor functional recovery in patients with SCI during the subacute phase, at the peak of brain and spinal plasticity.

View Article and Find Full Text PDF

Background: Electroencephalography (EEG)-based brain-computer interfaces (BCIs) allow to modulate the sensorimotor rhythms and are emerging technologies for promoting post-stroke motor function recovery. The Promotoer study aims to assess the short and long-term efficacy of the Promotoer system, an EEG-based BCI assisting motor imagery (MI) practice, in enhancing post-stroke functional hand motor recovery. This paper details the statistical analysis plan of the Promotoer study.

View Article and Find Full Text PDF

When dealing with complex functional brain networks, group analysis still represents an open issue. In this paper, we investigated the potential of an innovative approach based on PARAllel FActorization (PARAFAC) for the extraction of the grand average connectivity matrices from both simulated and real datasets. The PARAFAC approach was solved using three different numbers of rank-one tensors (PAR-FACT).

View Article and Find Full Text PDF

Background: Brain-Computer Interfaces (BCI) promote upper limb recovery in stroke patients reinforcing motor related brain activity (from electroencephalogaphy, EEG). Hybrid BCIs which include peripheral signals (electromyography, EMG) as control features could be employed to monitor post-stroke motor abnormalities. To ground the use of corticomuscular coherence (CMC) as a hybrid feature for a rehabilitative BCI, we analyzed high-density CMC networks (derived from multiple EEG and EMG channels) and their relation with upper limb motor deficit by comparing data from stroke patients with healthy participants during simple hand tasks.

View Article and Find Full Text PDF

Background: Disorders of Consciousness (DoC) are clinical conditions following a severe acquired brain injury (ABI) characterized by absent or reduced awareness, known as coma, Vegetative State (VS)/Unresponsive Wakefulness Syndrome (VS/UWS), and Minimally Conscious State (MCS). Misdiagnosis rate between VS/UWS and MCS is attested around 40% due to the clinical and behavioral fluctuations of the patients during bedside consciousness assessments. Given the large body of evidence that some patients with DoC possess "covert" awareness, revealed by neuroimaging and neurophysiological techniques, they are candidates for intervention with brain-computer interfaces (BCIs).

View Article and Find Full Text PDF

Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.

View Article and Find Full Text PDF

Brain-computer interface (BCI) can provide people with motor disabilities with an alternative channel to access assistive technology (AT) software for communication and environmental interaction. Multiple sclerosis (MS) is a chronic disease of the central nervous system that mostly starts in young adulthood and often leads to a long-term disability, possibly exacerbated by the presence of fatigue. Patients with MS have been rarely considered as potential BCI end-users.

View Article and Find Full Text PDF

Sensorimotor rhythms-based Brain-Computer Interfaces (BCIs) have successfully been employed to address upper limb motor rehabilitation after stroke. In this context, becomes crucial the choice of features that would enable an appropriate electroencephalographic (EEG) sensorimotor activation/engagement underlying the favourable motor recovery. Here, we present a novel feature selection algorithm (GUIDER) designed and implemented to integrate specific requirements related to neurophysiological knowledge and rehabilitative principles.

View Article and Find Full Text PDF

Background And Purpose: Patients with prolonged disorders of consciousness (pDoC) have a high mortality rate due to medical complications. Because an accurate prognosis is essential for decision-making on patients' management, we analysed data from an international multicentre prospective cohort study to evaluate 2-year mortality rate and bedside predictors of mortality.

Methods: We enrolled adult patients in prolonged vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS) after traumatic and nontraumatic brain injury within 3 months postinjury.

View Article and Find Full Text PDF

Hybrid Brain-Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the reinforcement of "more normal" brain and muscular activity. Here, we propose the combination of corticomuscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyography (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension (Ext) and grasping (Grasp) with both dominant and non-dominant hand.

View Article and Find Full Text PDF

Objective: This international multicenter, prospective, observational study aimed at identifying predictors of short-term clinical outcome in patients with prolonged disorders of consciousness (DoC) due to acquired severe brain injury.

Methods: Patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS) or in minimally conscious state (MCS) were enrolled within 3 months from their brain injury in 12 specialized medical institutions. Demographic, anamnestic, clinical, and neurophysiologic data were collected at study entry.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs for upper limb are critically needed. Brain-Computer Interfaces (BCIs) which enable the modulation of Electroencephalography (EEG) sensorimotor rhythms are promising tools to promote post-stroke recovery of upper limb motor function.

View Article and Find Full Text PDF

The brain-computer interfaces (BCIs) for neurologic rehabilitation are based on the assumption that by retraining the brain to specific activities, an ultimate improvement of function can be expected. In this chapter, we review the present status, key determinants, and future directions of the clinical use of BCI in neurorehabilitation. The recent advancements in noninvasive BCIs as a therapeutic tool to promote functional motor recovery by inducing neuroplasticity are described, focusing on stroke as it represents the major cause of long-term motor disability.

View Article and Find Full Text PDF

Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated.

View Article and Find Full Text PDF

Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors.

View Article and Find Full Text PDF

Background: Add-on robot-mediated therapy has proven to be more effective than conventional therapy alone in post-stroke gait rehabilitation. Such robot-mediated interventions routinely use also visual biofeedback tools. A better understanding of biofeedback content effects when used for robotic locomotor training may improve the rehabilitation process and outcomes.

View Article and Find Full Text PDF

Language disorders may occur in patients with disorders of consciousness (DoCs), and they could interfere with the behavioral assessment of consciousness and responsiveness. Objective. In this study, we retrospectively explored whether ERP N400 was eventually associated with the presence of aphasia diagnosed in those patients who had evolved into Exit-Minimally Conscious State (E-MCS) at the clinical follow-up.

View Article and Find Full Text PDF

Our objective was to investigate the capacity to control a P3-based brain-computer interface (BCI) device for communication and its related (temporal) attention processing in a sample of amyotrophic lateral sclerosis (ALS) patients with respect to healthy subjects. The ultimate goal was to corroborate the role of cognitive mechanisms in event-related potential (ERP)-based BCI control in ALS patients. Furthermore, the possible differences in such attentional mechanisms between the two groups were investigated in order to unveil possible alterations associated with the ALS condition.

View Article and Find Full Text PDF

Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT.

View Article and Find Full Text PDF

Brain connectivity has been employed to investigate on post-stroke recovery mechanisms and assess the effect of specific rehabilitation interventions. Changes in interhemispheric coupling after stroke have been related to the extent of damage in the corticospinal tract (CST) and thus, to motor impairment. In this study, we aimed at defining an index of interhemispheric connectivity derived from electroencephalography (EEG), correlated with CST integrity and clinical impairment.

View Article and Find Full Text PDF

The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market.

View Article and Find Full Text PDF