Compressive sensing (CS) has been proposed as a disruptive approach to developing a novel class of optical instrumentation used in diverse application domains. Thanks to sparsity as an inherent feature of many natural signals, CS allows for the acquisition of the signal in a very compact way, merging acquisition and compression in a single step and, furthermore, offering the capability of using a limited number of detector elements to obtain a reconstructed image with a larger number of pixels. Although the CS paradigm has already been applied in several application domains, from medical diagnostics to microscopy, studies related to space applications are very limited.
View Article and Find Full Text PDFRecent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry.
View Article and Find Full Text PDFRecent investigations have induced relevant advancements of imaging interferometry, which is becoming a viable option for Earth remote sensing. Various research programs have chosen the Sagnac configuration for new imaging interferometers. Due to the growing diffusion of this technique, we have developed a self-contained theory for describing the signal produced by triangular FTSs and its optimal processing.
View Article and Find Full Text PDFThe San Rossore Natural Park, located on the Tuscany (Italy) coast, has been utilized over the last 10 years for many remote sensing campaigns devoted to coastal zone monitoring. A wet area is located in the south-west part of the Natural Park and it is characterized by a system of ponds and dunes formed by sediment deposition occurring at the Arno River estuary. The considerable amount of collected data has permitted us to investigate the evolution of wetland spreading and land coverage as well as to retrieve relevant biogeochemical parameters, e.
View Article and Find Full Text PDFA new algorithm for the retrieval of columnar water vapor content is presented. The proposed procedure computes the area of the H2O absorption centered about 940 nm to allow its integrated columnar abundance as well as its density at ground level to be assessed. The procedure utilizes the HITRAN 2000 database as the source of H2O cross-section spectra.
View Article and Find Full Text PDFA new solar spectral irradiometer that operates in the visible and near-infrared spectral ranges has been developed. This instrument takes advantage of a new concept optical head that collects the light that impinges on a hemispheric surface, thus improving the instrument angular response with respect to traditional devices. The technical characteristics of the instrument are investigated and detailed, and its radiometric calibration, performed by means of a Langley-like method, is discussed.
View Article and Find Full Text PDF