Publications by authors named "Donatella Duraccio"

Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins.

View Article and Find Full Text PDF

The improvement of the mucosal sealing around the implant represents a challenge, one that prompted research into novel materials. To this purpose, a printable poly(ε-caprolactone) (PCL)-based composite loaded with alumina-toughened zirconia (ATZ) at increasing rates of 10, 20, and 40 wt.% was prepared, using a solvent casting method with chloroform.

View Article and Find Full Text PDF

Mixtures containing β-glucans were extracted from barley, under both mild and high alkaline conditions, to prepare biodegradable films (MA and HA, respectively), as natural dressings with intrinsic therapeutic properties. An in-depth characterization was performed to evaluate the impact of mild and high alkaline conditions on chemical, physicochemical, and biological features for potential use in wound treatments. Both MA and HA films exhibited a good ability to absorb water and simulate wound fluid, which helps maintain optimal tissue hydration.

View Article and Find Full Text PDF

Objectives: The purpose of this work was to optimise printable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) biomaterials with high percentages of β-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis.

Methods: PCL/β-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of β-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored the antibiofilm effects of water-soluble extracts from seeds, using different pH levels, and found that the extracts contained various fatty acids, sugars, and other compounds whose composition varied with pH.
  • - The extract from defatted seeds at pH 7 showed the strongest antibiofilm activity (around 90%) and had a rich variety of sugars, while extracts from pH 10 were less effective.
  • - Further analysis indicated that glycerolipids in the most active fraction likely contributed to the antibiofilm effect, although other components may also play a role.
View Article and Find Full Text PDF

The combination of conductive carbon together with magnetic particles is a consolidated strategy to produce cutting-edge fillers for the production of polymer composites able to shield against microwave radiation. In this work, we developed and characterized an iron-tailored biochar obtained from the pyrolysis of olive pruning which was added as filler for the preparation of epoxy composites. The biochar-based composites were obtained by keeping the filler concentration at 10 and 40 wt.

View Article and Find Full Text PDF

In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar at two different concentrations (i.e.

View Article and Find Full Text PDF

ZnO flower-like (ZFL) and needle (ZLN) structures were synthesized and embedded into UV-curable acrylic resin (EB), with the aim to study the effect of filler loading on the piezoelectric properties of the resulting composite films. The composites showed uniform dispersion of fillers within the polymer matrix. However, by increasing the filler amount, the number of aggregates increased, and ZnO fillers appeared not to be perfectly embedded in polymer film, indicating poor interaction with acrylic resin.

View Article and Find Full Text PDF

To reduce the use of carbon components sourced from fossil fuels, hemp fibers were pyrolyzed and utilized as filler to prepare EVA-based composites for automotive applications. The mechanical, tribological, electrical (DC and AC) and thermal properties of EVA/fiber biochar (HFB) composites containing different amounts of fibers (ranging from 5 to 40 wt.%) have been thoroughly studied.

View Article and Find Full Text PDF

"Biochar" (BC) is the solid residue recovered from the thermal cracking of biomasses in an oxygen-poor atmosphere. Recently, BC has been increasingly explored as a sustainable, inexpensive, and viable alternative to traditional carbonaceous fillers for the development of polymer-based composites. In fact, BC exhibits high thermal stability, high surface area, and electrical conductivity; moreover, its main properties can be properly tuned by controlling the conditions of the production process.

View Article and Find Full Text PDF

The surface functionalisation of high-density polyethylene (HDPE) and HDPE/alumina-toughened zirconia (ATZ) surfaces with chitosan via electron-beam (EB) irradiation technique was exploited for preparing materials suitable for biomedical purposes. ATR-FTIR analysis and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. Interestingly, the presence of ATZ loadings beyond 2 wt% influenced both the EB irradiation process and the chitosan functionalisation reaction, decreasing the oxidation of the surface and the chitosan grafting.

View Article and Find Full Text PDF

In this study, mixtures based on β-glucans and proteins are extracted from barley, in mild (MA) and high (HA) alkaline conditions, and employed with zinc oxide (ZnO) to prepare bioactive films for wound healing. Composition of extracts and properties of resulting films depend on pH extraction conditions. MA based samples show weak physical interactions among mixture components, whereas in HA films the extent of these interactions is larger.

View Article and Find Full Text PDF

In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e.

View Article and Find Full Text PDF

Although PLA is much more expensive than polyolefins, such as PP and PE, there is a great interest to propose PLA based material as alternative films for food packaging being PLA derivable from natural source, compostable and biodegradable. For this purpose the research has the task to investigate and propose PLA materials with enhanced properties to be effectively and efficiently alternative to polyolefin films for food packaging application. In this contribution, biocomposite films of PLA with 1, 3 and 5wt% of ZnO have been investigated to determine mechanical, barrier and antimicrobial (against Escherichia coli) properties.

View Article and Find Full Text PDF