Midwest crop production is dominated by two summer annual crops grown in rotation, viz., corn ( L.) and soybean ( L.
View Article and Find Full Text PDFThlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae.
View Article and Find Full Text PDFField pennycress ( L.) is currently being developed as a new cold-tolerant oilseed crop. In natural populations, pennycress, like many Brassicaceae relatives, can exhibit either a winter or spring annual phenotype.
View Article and Find Full Text PDFThlaspi arvense (pennycress) has the potential for domestication as a new oilseed crop. Information from an extensive body of research on the related plant species Arabidopsis can be used to greatly speed this process. Genome-scale comparisons in this paper documented that pennycress and Arabidopsis share similar gene duplication.
View Article and Find Full Text PDFPerennial agriculture has been proposed as an option to improve the sustainability of cropping systems, by increasing the efficiency of resource use, while also providing ecosystem services. Neo-domestication, the contemporary domestication of plants that have not previously been used in agriculture, can be used to generate new crops for these systems. Here we explore the potential of a tetraploid (2n = 4x = 68) interspecific hybrid sunflower as a perennial oilseed for use in multifunctional agricultural systems.
View Article and Find Full Text PDFIntermediate wheatgrass [IWG; (Host) Barkworth & D.R. Dewey subsp.
View Article and Find Full Text PDFIntermediate wheatgrass (IWG) is a perennial species and has edible and nutritious grain and desirable agronomic traits, including large seed size, high grain yield, and biomass. It also has the potential to provide ecosystem services and an economic return to farmers. However, because of its allohexaploidy and self-incompatibility, developing molecular markers for genetic analysis and molecular breeding has been challenging.
View Article and Find Full Text PDFIncorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil.
View Article and Find Full Text PDFAgricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems.
View Article and Find Full Text PDFHistorically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution.
View Article and Find Full Text PDFField pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress.
View Article and Find Full Text PDFField pennycress (Thlaspi arvense L.) has potential as an oilseed crop that may be grown during fall (autumn) and winter months in the Midwestern United States and harvested in the early spring as a biodiesel feedstock. There has been little agronomic improvement in pennycress through traditional breeding.
View Article and Find Full Text PDFPerennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment.
View Article and Find Full Text PDFAfter a decade of transgenic crop production, the dynamics of gene introgression into wild relatives remain unclear. Taking an ecological genetics approach to investigating fitness in crop-wild hybrid zones, we uncovered both conditions and characteristics that may promote introgression. We compared diverse crop-wild hybrid genotypes relative to wild Helianthus annuus under one benign and three stressful agricultural environments.
View Article and Find Full Text PDFGene flow between crop fields and wild populations often results in hybrids with reduced fitness compared to their wild counterparts due to characteristics imparted by the crop genome. But the specifics of the evolutionary outcome of crop-wild gene flow may depend on context, varying due to local environmental conditions and genetic variation within and among wild populations and among crop lines. To evaluate context-dependence of fitness of F1 hybrids, sunflower crop lines were crossed with nine wild populations from across the northern United States.
View Article and Find Full Text PDFGene flow from crop fields to wild populations produces hybrids that often differ from their wild counterparts in growth form, phenology, and life history characteristics. Germination and dormancy dynamics have a strong influence on population persistence, competitive dynamics, and ultimately, plant fitness. They may also play a role in modifying crop gene introgression, which has been of primary interest since the release of transgenic crops.
View Article and Find Full Text PDF