A novel series of piperazine derivatives exhibits sub-nanomolar binding and enhanced subtype selectivity as δ-opioid agonists. The synthesis and SAR are described as well as the application of computational models to improve in vitro ADME and safety properties suitable for CNS indications, specifically microsomal clearance, permeability, and hERG channel inhibition.
View Article and Find Full Text PDFA series of 4-piperidin-4-ylidenemethyl-benzamide δ-opioid receptor agonists is described with an emphasis on balancing the potency, subtype selectivity and in vitro ADME and safety properties. The three sites impacting SAR are substitutions on the aryl group (R(1)), the piperidine nitrogen (R(2)), and the amide (R(3)). Each region contributes to the balance of properties for δ opioid activity and a desirable CNS profile, and two clinical candidates (20 and 24) were advanced.
View Article and Find Full Text PDFPreviously we reported on the synthesis and properties of a series of highly potent piperidinyl 2-subsituted-3-cyano-1-naphthamide NK1 antagonists that includes 3 and 4. Here we report our efforts to alleviate a troublesome atropisomeric property of those derivatives by introduction of a tethering bridge that, in addition, could be used to lock the resulting cyclic derivatives in a purported NK1 pharmacophore conformation. Using 3 as a starting point, the naphtho[2,1-b][1,5]oxazocine, 17, was found to contain the optimal ring tether size (8) for retaining NK1 activity, was more NK1 versus NK2 selective, and reduced the number of atropisomers from four to two.
View Article and Find Full Text PDF