Publications by authors named "Donald Simone"

Aims: Bone cancer produces severe pain that is treated with opioids, but serious side effects limit opioid utilization. There is therefore a need to develop effective and safe non-opioid alternatives. The lipid mediator, Resolvin D1 (RvD1), could be a prospective candidate for cancer pain treatment.

View Article and Find Full Text PDF

Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms.

View Article and Find Full Text PDF

Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE.

View Article and Find Full Text PDF

Background: This study investigated if a localized increase in skin temperature in rat models of incisional and inflammatory pain correlates with the intensity of spontaneous and evoked pain behaviors.

Methods: Anesthetized rats received either a 20-mm longitudinal incision made through the skin, fascia, and muscle of the plantar hind paw or an injection of complete Freund adjuvant into the plantar hind paw of anesthetized rats to induce local inflammation. Spontaneous and evoked pain behaviors were assessed, and changes in skin temperature were measured using a noncontact infrared thermometer.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is an inherited blood disorder that is associated with acute episodic and chronic pain. Mice with SCD have robust hyperalgesia mediated, in part, by sensitization of spinal dorsal horn neurons. However, underlying mechanisms are not fully understood.

View Article and Find Full Text PDF

Pain associated with bone cancer remains poorly managed, and chemotherapeutic drugs used to treat cancer usually increase pain. The discovery of dual-acting drugs that reduce cancer and produce analgesia is an optimal approach. The mechanisms underlying bone cancer pain involve interactions between cancer cells and nociceptive neurons.

View Article and Find Full Text PDF

MMG22 is a bivalent ligand containing MOR agonist and mGluR5 antagonist pharmacophores connected by a 22-atom linker. Intrathecal (i.t.

View Article and Find Full Text PDF

Methylene blue (MB) is an effective treatment for methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning, and refractory vasoplegia. However, clinical case reports and preclinical studies indicate potentially neurotoxic activity of MB at certain concentrations. The exact mechanisms of MB neurotoxicity are not known, and while the effects of MB on neuronal tissue from different brain regions and myenteric ganglia have been examined, its effects on primary afferent neurons from dorsal root ganglia (DRG) have not been studied.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is the most common inherited disease. Pain is a key morbidity of SCD and opioids are the main treatment but their side effects emphasize the need for new analgesic approaches. Humanized transgenic mouse models have been instructive in understanding the pathobiology of SCD and mechanisms of pain.

View Article and Find Full Text PDF

Although millions of people are diagnosed with cancer each year, survival has never been greater thanks to early diagnosis and treatments. Powerful chemotherapeutic agents are highly toxic to cancer cells, but because they typically do not target cancer cells selectively, they are often toxic to other cells and produce a variety of side effects. In particular, many common chemotherapies damage the peripheral nervous system and produce neuropathy that includes a progressive degeneration of peripheral nerve fibers.

View Article and Find Full Text PDF

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice.

View Article and Find Full Text PDF

To develop non-opioid therapies for postoperative incisional pain, we must understand its underlying molecular mechanisms. In this study, we assessed global gene expression changes in dorsal root ganglia neurons in a model of incisional pain to identify pertinent molecular pathways. Male, Sprague-Dawley rats underwent infiltration of 1% capsaicin or vehicle into the plantar hind paw (n = 6-9/group) 30 min before plantar incision.

View Article and Find Full Text PDF

It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express Na1.8 voltage-gated sodium channels.

View Article and Find Full Text PDF

Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone.

View Article and Find Full Text PDF

Functional interactions between the mu opioid receptor (MOR) and the metabotropic glutamate receptor 5 (mGluR5) in pain and analgesia have been well established. MMG22 is a bivalent ligand containing MOR agonist (oxymorphamine) and mGluR5 antagonist (MPEP) pharmacophores tethered by a 22-atom linker. MMG22 has been shown to produce potent analgesia in several models of chronic inflammatory and neuropathic pain (NP).

View Article and Find Full Text PDF

Understanding of cortical encoding of itch is limited. Injection of pruritogens and algogens into the skin of the cheek produces distinct behaviors, making the rodent cheek a useful model for understanding mechanisms of itch and pain. We examined responses of neurons in the primary somatosensory cortex by application of mechanical stimuli (brush, pressure, and pinch) and stimulations with intradermal injections of pruritic and algesic chemical of receptive fields located on the skin of the cheek in urethane-anesthetized rats.

View Article and Find Full Text PDF

Background: Spontaneous pain after surgical incision is a significant problem for most post-operative patients. Pain management that relies on opioids is hindered by numerous side effects, fuelling interest in non-opioid alternatives and multimodal approaches. Subcutaneous capsaicin infiltration has shown potential for reducing post-operative pain, but there are unanswered questions about safety and possible side effects.

View Article and Find Full Text PDF

Pain is among the most common symptoms in cancer and approximately 90% of patients experience end-stage cancer pain. The management of cancer pain is challenging due to the significant side effects associated with opioids, and novel therapeutic approaches are needed. MMG22 is a bivalent ligand containing MOR agonist and mGluR antagonist pharmacophores joined by a 22-atom spacer.

View Article and Find Full Text PDF

Objectives: Intrathecal baclofen (ITB) pumps used to manage spasticity in children with cerebral palsy (CP) also improve pain outcomes for some but not all patients. The purpose of this clinical feasibility study was to explore whether a quantitative sensory testing approach could a) be modified and used to subgroup individuals into sensory profiles and b) test whether the profiles were related to postimplant pain outcomes (i.e.

View Article and Find Full Text PDF

Sickle cell disease (SCD) describes a group of disorders associated with a point mutation in the beta chain of hemoglobin. The mutation leads to the creation of sickle hemoglobin (HbS) and causes distortion of erythrocytes through polymerization under low oxygen, resulting in characteristic sickle red blood cells. Vaso-occlusion episodes caused by accumulation of sRBCs results in ischemia-reperfusion injury, reduced oxygen supply to organs, oxidative stress, organ damage and severe pain that often requires hospitalization and opioid treatment.

View Article and Find Full Text PDF

Cisplatin and other widely employed platinum-based anticancer agents produce chemotherapy-induced peripheral neuropathy (CIPN) that often results in pain and hyperalgesia that are difficult to manage. We investigated the efficacy of a novel bivalent ligand, MCC22, for the treatment of pain arising from CIPN. MCC22 consists of mu opioid receptor (MOR) agonist and chemokine receptor 5 (CCR5) antagonist pharmacophores connected through a 22-atom spacer and was designed to target a putative MOR-CCR5 heteromer localized in pain processing areas.

View Article and Find Full Text PDF

Pain is a characteristic feature of sickle cell disease (SCD), 1 of the most common inherited diseases. Patients may experience acute painful crises as well as chronic pain. In the Berkley transgenic murine model of SCD, HbSS-BERK mice express only human hemoglobin S.

View Article and Find Full Text PDF

Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.

View Article and Find Full Text PDF

Understanding of processing and transmission of information related to itch and pain in the thalamus is incomplete. In fact, no single unit studies of pruriceptive transmission in the thalamus have yet appeared. In urethane-anesthetized rats, we examined responses of 66 thalamic neurons to itch- and pain- inducing stimuli including chloroquine, serotonin, β-alanine, histamine, and capsaicin.

View Article and Find Full Text PDF