Sci Total Environ
January 2023
Ecological models help provide forecasts of ecosystem responses to natural and anthropogenic stresses. However, their ability to create reliable predictions requires forecasts with track records sufficiently long to build confidence, skill assessments, and treating uncertainty quantitatively. We use Lake Erie harmful algal blooms as a case study to help formalize ecological forecasting.
View Article and Find Full Text PDFCapturing precipitation-based episodes is a longstanding issue for estimating tributary loads; however, wind-driven resuspension in Lake Huron creates similar uncertainties in its estimated load to Lake Erie. Recent suggestions that the phosphorus load from Lake Huron is underestimated because sampling frequencies miss contributions from resuspension events are speculative because they did not include direct load measurements, address all resuspension regions, or assess the potential bioavailability of the load. We address these shortcomings by evaluating Lake Huron's nearshore regions, characterizing the biological availability of the load, and providing direct comparisons of load estimates with and without the resuspended load.
View Article and Find Full Text PDFEcological forecasts are quantitative tools that can guide ecosystem management. The coemergence of extensive environmental monitoring and quantitative frameworks allows for widespread development and continued improvement of ecological forecasting systems. We use a relatively simple estuarine hypoxia model to demonstrate advances in addressing some of the most critical challenges and opportunities of contemporary ecological forecasting, including predictive accuracy, uncertainty characterization, and management relevance.
View Article and Find Full Text PDFThe need for effective water quality models to help guide management and policy, and extend monitoring information, is at the forefront of recent discussions related to watershed management. These models are often calibrated and validated at the basin outlet, which ensures that models are capable of evaluating basin scale hydrology and water quality. However, there is a need to understand where these models succeed or fail with respect to internal process representation, as these watershed-scale models are used to inform management practices and mitigation strategies upstream.
View Article and Find Full Text PDFReducing harmful algal blooms in Lake Erie, situated between the United States and Canada, requires implementing best management practices to decrease nutrient loading from upstream sources. Bi-national water quality targets have been set for total and dissolved phosphorus loads, with the ultimate goal of reaching these targets in 9-out-of-10 years. Row crop agriculture dominates the land use in the Western Lake Erie Basin thus requiring efforts to mitigate nutrient loads from agricultural systems.
View Article and Find Full Text PDFIn response to increased harmful algal blooms (HABs), hypoxia, and nearshore algae growth in Lake Erie, the United States and Canada agreed to phosphorus load reduction targets. While the load targets were guided by an ensemble of models, none of them considered the effects of climate change. Some watershed models developed to guide load reduction strategies have simulated climate effects, but without extending the resulting loads or their uncertainties to HAB projections.
View Article and Find Full Text PDFWatershed-scale hydrologic models are frequently used to inform conservation and restoration efforts by identifying critical source areas (CSAs; alternatively 'hotspots'), defined as areas that export relatively greater quantities of nutrients and sediment. The CSAs can then be prioritized or 'targeted' for conservation and restoration to ensure efficient use of limited resources. However, CSA simulations from watershed-scale hydrologic models may be uncertain and it is critical that the extent and implications of this uncertainty be conveyed to stakeholders and decision makers.
View Article and Find Full Text PDFWaterbodies around the world experience problems associated with elevated phosphorus (P) and nitrogen (N) loads. While vital for ecosystem functioning, when present in excess amounts these nutrients can impair water quality and create symptoms of eutrophication, including harmful algal blooms. Under a changing climate, nutrient loads are likely to change.
View Article and Find Full Text PDFThe adverse impacts of harmful algal blooms (HABs) are increasing worldwide. Lake Erie is a North American Great Lake highly affected by cultural eutrophication and summer cyanobacterial HABs. While phosphorus loading is a known driver of bloom size, more nuanced yet crucial questions remain.
View Article and Find Full Text PDFHydrologic models are applied increasingly with climate projections to provide insights into future hydrologic conditions. However, both hydrologic models and climate models can produce a wide range of predictions based on model inputs, assumptions, and structure. To characterize a range of future predictions, it is common to use multiple climate models to drive hydrologic models, yet it is less common to also use a suite of hydrologic models.
View Article and Find Full Text PDFThe United States and Canada called for a 40% load reduction of total phosphorus from 2008 levels entering the western and central basins of Lake Erie to achieve a 6000 MTA target and help reduce its central basin hypoxia. The Detroit River is a significant source of total phosphorus to Lake Erie; it in turn has been reported to receive up to 58% of its load from Lake Huron when accounting for resuspended sediment loads previously unmonitored at the lake outlet. Key open questions are where does this additional load originate, what drives its variability, and how often does it occur.
View Article and Find Full Text PDFHarmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due to the limitations of discrete shipboard sampling over large areas and the effects of clouds and winds on remote sensing estimates.
View Article and Find Full Text PDFIn the past 20 years, Lake Erie has experienced a resurgence of harmful algal blooms and hypoxia driven by increased nutrient loading from its agriculturally dominated watersheds. The increase in phosphorus loading, specifically the dissolved reactive portion, has been attributed to a combination of changing climate and agricultural management. While many management practices and strategies have been identified to reduce phosphorus loads, the impacts of future climate remain uncertain.
View Article and Find Full Text PDFAs more sensor data become available across urban water systems, it is often unclear which of these new measurements are actually useful and how they can be efficiently ingested to improve predictions. We present a data-driven approach for modeling and predicting flows across combined sewer and drainage systems, which fuses sensor measurements with output of a large numerical simulation model. Rather than adjusting the structure and parameters of the numerical model, as is commonly done when new data become available, our approach instead learns causal relationships between the numerically-modeled outputs, distributed rainfall measurements, and measured flows.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
A large region of low-dissolved-oxygen bottom waters (hypoxia) forms nearly every summer in the northern Gulf of Mexico because of nutrient inputs from the Mississippi River Basin and water column stratification. Policymakers developed goals to reduce the area of hypoxic extent because of its ecological, economic, and commercial fisheries impacts. However, the goals remain elusive after 30 y of research and monitoring and 15 y of goal-setting and assessment because there has been little change in river nitrogen concentrations.
View Article and Find Full Text PDFCyanobacteria blooms are a major environmental issue worldwide. Our understanding of the biophysical processes driving cyanobacterial proliferation and the ability to develop predictive models that inform resource managers and policy makers rely upon the accurate characterization of bloom dynamics. Models quantifying relationships between bloom severity and environmental drivers are often calibrated to an individual set of bloom observations, and few studies have assessed whether differences among observing platforms could lead to contrasting results in terms of relevant bloom predictors and their estimated influence on bloom severity.
View Article and Find Full Text PDFWidespread adoption of agricultural conservation measures in Lake Erie's Maumee River watershed may be required to reduce phosphorus loading that drives harmful algal blooms and hypoxia. We engaged agricultural and conservation stakeholders through a survey and workshops to determine which conservation practices to evaluate. We investigated feasible and desirable conservation practices using the Soil and Water Assessment Tool calibrated for streamflow, sediment, and nutrient loading near the Maumee River outlet.
View Article and Find Full Text PDFThe recent resurgence of hypoxia and harmful algal blooms in Lake Erie, driven substantially by phosphorus loads from agriculture, have led the United States and Canada to begin developing plans to meet new phosphorus load targets. To provide insight into which agricultural management options could help reach these targets, we tested alternative agricultural-land-use and land-management scenarios on phosphorus loads to Lake Erie. These scenarios highlight certain constraints on phosphorus load reductions from changes in the Maumee River Watershed (MRW), which contributes roughly half of the phosphorus load to the lake's western basin.
View Article and Find Full Text PDFA mechanistic model was developed to predict midsummer bottom-water dissolved oxygen (BWDO) concentration and hypoxic area on the Louisiana shelf of the northern Gulf of Mexico, USA (1985-2011). Because of its parsimonious formulation, the model possesses many of the benefits of simpler, more empirical models, in that it is computationally efficient and can rigorously account for uncertainty through Bayesian inference. At the same time, the model incorporates important biophysical processes such that its parameterization can be informed by field-measured biological and physical rates.
View Article and Find Full Text PDFEnviron Sci Technol
September 2013
For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions.
View Article and Find Full Text PDFRobust estimates of hypoxic extent (both area and volume) are important for assessing the impacts of low dissolved oxygen on aquatic ecosystems at large spatial scales. Such estimates are also important for calibrating models linking hypoxia to causal factors, such as nutrient loading and stratification, and for informing management decisions. In this study, we develop a rigorous geostatistical modeling framework to estimate the hypoxic extent in the northern Gulf of Mexico from data collected during midsummer, quasi-synoptic monitoring cruises (1985-2011).
View Article and Find Full Text PDFIn 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system.
View Article and Find Full Text PDFHypoxic conditions, defined as dissolved oxygen (DO) concentrations below 2 mg/L, are a regular summertime occurrence in Lake Erie, but the spatial extent has been poorly understood due to sparse sampling. We use geostatistical kriging and conditional realizations to provide quantitative estimates of the extent of hypoxia in the central basin of Lake Erie for August and September of 1987 to 2007, along with their associated uncertainties. The applied geostatistical approach combines the limited in situ DO measurements with auxiliary data selected using the Bayesian Information Criterion.
View Article and Find Full Text PDFEnviron Sci Technol
October 2012
Renewed harmful algal blooms and hypoxia in Lake Erie have drawn significant attention to phosphorus loads, particularly increased dissolved reactive phosphorus (DRP) from highly agricultural watersheds. We use the Soil and Water Assessment Tool (SWAT) to model DRP in the agriculture-dominated Sandusky watershed for 1970-2010 to explore potential reasons for the recent increased DRP load from Lake Erie watersheds. We demonstrate that recent increased storm events, interacting with changes in fertilizer application timing and rate, as well as management practices that increase soil stratification and phosphorus accumulation at the soil surface, appear to drive the increasing DRP trend after the mid-1990s.
View Article and Find Full Text PDF