A pair of Mauthner cells (M-cells) can be found in the hindbrain of most teleost fish, as well as amphibians and lamprey. The axons of these reticulospinal neurons cross the midline and synapse on interneurons and motoneurons as they descend the length of the spinal cord. The M-cell initiates fast C-type startle responses (fast C-starts) in goldfish and zebrafish triggered by abrupt acoustic/vibratory stimuli.
View Article and Find Full Text PDFRapid activation of resident glia occurs after spinal cord injury. Somewhat later, innate and adaptive immune responses occur with the invasion of peripheral immune cells into the wound site. The activation of resident and peripheral immune cells has been postulated to play harmful as well as beneficial roles in the regenerative process.
View Article and Find Full Text PDFElectrical signaling is a cardinal feature of the nervous system and endows it with the capability of quickly reacting to changes in the environment. Although synaptic communication between nerve cells is perceived to be mainly chemically mediated, electrical synaptic interactions also occur. Two different strategies are responsible for electrical communication between neurons.
View Article and Find Full Text PDFWe describe a fast activity-dependent homeostatic regulation of intrinsic excitability of identified neurons in mouse dorsal striatum, the striatal output neurons. It can be induced by brief bursts of activity, is expressed on a time scale of seconds, limits repetitive firing, and can convert regular firing patterns to irregular ones. We show it is due to progressive recruitment of the KCNQ2/3 channels that generate the M current.
View Article and Find Full Text PDFChanges in the activity of striatal output neurons (SONs) have been implicated in the pathogenesis of Huntington's disease (HD). In this inherited polyglutamine disorder, accumulation of intracellular toxins causes a variety of deficits, including synaptic dysfunction, but it is still unclear to what extent striatal GABA release is afflicted as well. Two murine HD models were used, a recently created knock-in mouse (Z_Q175_KI) and an established model of HD (R6/2).
View Article and Find Full Text PDFThe goldfish Mauthner (M-) cells, a bilateral pair of reticulospinal neurons, initiate the auditory evoked escape behavior of teleosts. In an open field the fish reliably turns away from the sound source. This implies that the M-cells are capable of a decision-making process that requires the two cells to receive differential directional inputs.
View Article and Find Full Text PDFGoldfish (Carassius auratus) escape responses to sudden auditory stimuli are mediated by a pair of reticulospinal neurons, the Mauthner (M-) cells, which integrate mechanosensory inputs from the inner ear and the lateral line (LL) to initiate a fast directional response away from the aversive stimulus. This behavior is context dependent; when near an obstruction the fish may rather turn towards the sound to avoid hitting the object. Mechanisms underlying this directionality remain unknown.
View Article and Find Full Text PDFMany synapses exhibit temporally complex forms of activity-dependent short-term synaptic plasticity. The diversity of these phenomena reflects the evolutionary specialization of synapses within networks. We examined the properties of transmission and plasticity, in vivo, at an identified, specialized axo-axonic nicotinic synapse between the goldfish Mauthner cell and one of its targets, the cranial relay neuron (CRN), using intracellular paired recordings and low frequency (0.
View Article and Find Full Text PDFUsually nicotinic receptors in the central nervous system only influence the strength of a signal between neurons. At a few critical connections, for instance some of those involved in the flight response, nicotinic receptors not only modulate the signal, they actually determine whether a signal is conveyed or not. We show at one of the few such connections accessible for study, up to three different nicotinic receptor subtypes mediate the signal.
View Article and Find Full Text PDFAn endogenous electrical field effect, i.e., ephaptic transmission, occurs when an electric field associated with activity occurring in one neuron polarizes the membrane of another neuron.
View Article and Find Full Text PDFThe paired teleost Mauthner (M)-cells and their associated network serve as an excellent system to study the biophysical basis of decision making. In teleosts, an abrupt sound evokes an M-spike, triggering a C-start escape that is usually directed away from a sound source. The response latency is minimized by electrical synapses between auditory afferents and the M-cell lateral dendrite.
View Article and Find Full Text PDFAlthough it is accepted that extracellular fields generated by neuronal activity can influence the excitability of neighboring cells, whether this form of neurotransmission has a functional role remains open. In vivo field effects occur in the teleost Mauthner (M)-cell system, where a combination of structural features support the concept of inhibitory electrical synapses. A single spike in one M-cell evoked within as little as 2.
View Article and Find Full Text PDFIn this study, we address the impact of temperature acclimation on neuronal properties in the Mauthner (M-) system, a brain stem network that initiates the startle-escape behavior in goldfish. The M-cell can be studied at cellular and behavioral levels, since it is uniquely identifiable physiologically within the intact vertebrate brain, and a single action potential in this neuron determines not only whether a startle response will occur but also the direction of the escape. Using animals acclimated to 15 degrees C as a control, 25 degrees C-acclimated fish showed a significant increase in escape probability and a decrease in the ability to discriminate escape directionality.
View Article and Find Full Text PDFWe present a 2-day water maze protocol that addresses some of potential confounds present in the water maze when using the aged subjects typical of studies of neurodegenerative disorders, such as Alzheimer's disease. This protocol is based on an initial series of training trials with a visible platform, followed by a memory test with a hidden platform 24h later. We validated this procedure using aged (15-18m) mice expressing three Alzheimer's disease-related transgenes, PS1(M146 V), APP(Swe), and tau(P301L).
View Article and Find Full Text PDFThe Mauthner (M-) cell of the goldfish, Carassius auratus, triggers the rapid escape response of the fish in response to various stimuli, including visual and auditory. The large size and accessibility of the M-cell make it an ideal model system for the study of synaptic transmission, membrane properties, and sensory-motor gating. Although physiological recordings have suggested that afferents from all three of the inner ear endorgans (the saccule, lagena, and utricle) synapse directly on the ipsilateral M-cell, the specific contacts and anatomical distributions of these inputs along the M-cell lateral dendrite remain unknown.
View Article and Find Full Text PDFStartle behaviors in teleost fishes are well suited for investigations of mechanisms of sensorimotor integration because the behavior is quantifiable and much of the underlying circuitry has been identified. The teleost C-start is triggered by an action potential in one of the two Mauthner (M) cells. To correlate C-start behavior with electrophysiology, extracellular recordings were obtained from the surface of the medulla oblongata in the hindbrain, close to the M-axons, in freely swimming goldfish monitored using high-speed video.
View Article and Find Full Text PDFAlthough behavior is ultimately guided by decision-making neurons and their associated networks, the mechanisms underlying neural decision-making in a behaviorally relevant context remain mostly elusive. To address this question, we analyzed goldfish escapes in response to distinct visual looming stimuli with high-speed video and compared them with electrophysiological responses of the Mauthner cell (M-cell), the threshold detector that initiates such behaviors. These looming stimuli evoke powerful and fast body-bend (C-start) escapes with response probabilities between 0.
View Article and Find Full Text PDFThe Mauthner (M) cell is a critical element in a vital escape "reflex" triggered by abrupt or threatening events. Its properties at the molecular and synaptic levels, their various forms of plasticity, and the design of its networks, are all well adapted for this survival function. They guarantee that this behavior is appropriately unilateral, variable, and unpredictable.
View Article and Find Full Text PDFThe formation and subsequent elimination of electrical coupling between neurons has been demonstrated in many developing vertebrate and invertebrate nervous systems. The relationship between the disappearance of electrical synaptic connectivity and the appearance of chemical neurotransmission is not well understood. We report here that identified motoneurons from the snail Helisoma formed transient electrical and chemical connections during regeneration both in vivo and in vitro.
View Article and Find Full Text PDFActivation of auditory afferents on the lateral dendrite of the Mauthner (M)-cell triggers an escape response (C-start) in goldfish. To study distinct behavioral changes and their physiological correlates on a cellular level we examined the effect of acute changes of temperature on M-cell membrane properties and intracellular responses to sound clicks and on C-start kinematics and behavior, focusing on threshold and initial escape direction, two properties determined on the M-cell level. Cooling slowed C-start motor performance, increasing response latency and decreasing peak velocity and peak acceleration, but increased the probability of triggering the escape.
View Article and Find Full Text PDFWe have previously reported that short-term (48-72 h) exposure to the GABA-modulatory steroid 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alpha-THP) increases expression of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus of adult rats. This change in subunit composition was accompanied by altered pharmacology and an increase in general excitability associated with acceleration of the decay time constant (tau) for GABA-gated current of pyramidal cells acutely isolated from CA1 hippocampus similar to what we have reported following withdrawal from the steroid after chronic long-term administration. Because GABAR can be localized to either synaptic or extrasynaptic sites, we tested the hypothesis that this change in receptor kinetics is mediated by synaptic GABAR.
View Article and Find Full Text PDFAt most synapses, information about the processes underlying transmitter release evoked by a presynaptic action potential has been gathered indirectly, based on characterization of the postsynaptic response. Traditionally, the two electrophysiological parameters used for this indirect investigation are the amplitude and latency of the response. The amplitude measures amount of transmitter released; the latency (synaptic delay) reflects the kinetics of a sequence of events that culminates in release.
View Article and Find Full Text PDF