The propagation of an optical pulse in a coupled-resonator optical waveguide may be calculated nonperturbatively to all orders of dispersion, in the conventional tight-binding approximation, even though the dispersion relationship is nonlinear. Working in this framework, we discuss limits of the physical parameters and approximations to the exact formulation that highlight the conditions under which pulse distortion can be minimized. The results are fundamental to the design of coupled-resonator optical waveguides and are also relevant to other applications of the tight-binding method.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2002
In endocrine glands, vigorous and coordinated responses are often elicited by modest changes in the concentration of the agonist molecule. The mammalian parathyroid gland is a representative case. Small (5%) changes in serum calcium result in 10-fold (1,000%) changes in glandular parathyroid hormone (PTH) release.
View Article and Find Full Text PDF