Publications by authors named "Donald R Walkinshaw"

Investment in Strep A vaccine R&D is disproportionately low relative to the large burden of Strep A diseases globally. This study presents a novel Strep A vaccine global demand and financial forecast model with estimates of potential global demand and associated revenue and profits for a hypothetical Strep A vaccine as well as a net present value (NPV) analysis of return on capital investments required to develop the vaccine. A positive NPV was calculated for a variety of developer scenarios and target populations, including the global rollout of the vaccine in private and public markets by a multinational pharmaceutical corporation and a staged rollout by a developing country vaccine manufacturer for both infant and child populations.

View Article and Find Full Text PDF

Recent efforts have re-invigorated the Streptococcus pyogenes (Group A Streptococcus) vaccine development field, though scientific, regulatory and commercial barriers persist, and the vaccine pipeline remains sparse. There is an ongoing need to accelerate all aspects of development to address the large global burden of disease caused by the pathogen. Building on over 100 years of S.

View Article and Find Full Text PDF

Histone deacetylases 4 (HDAC4), -5, -7, and -9 form class IIa within the HDAC superfamily and regulate diverse physiological and pathological cellular programs. With conserved motifs for phosphorylation-dependent 14-3-3 binding, these deacetylases serve as novel signal transducers that are able to modulate histone acetylation and gene expression in response to extracellular cues. Here, we report that in a PKA-sensitive manner the tumor suppressor kinase LKB1 acts through salt-inducible kinase 2 (SIK2) and SIK3 to promote nucleocytoplasmic trafficking of class IIa HDACs.

View Article and Find Full Text PDF

Histone deacetylase 4 (HDAC4) and its paralogs, HDAC5, -7, and -9 (all members of class IIa), possess multiple phosphorylation sites crucial for 14-3-3 binding and subsequent nuclear export. cAMP signaling stimulates nuclear import of HDAC4 and HDAC5, but the underlying mechanisms remain to be elucidated. Here we show that cAMP potentiates nuclear localization of HDAC9.

View Article and Find Full Text PDF

Background: Histone deacetylases (HDACs) constitute a family of enzymes that deacetylate histones and other cellular proteins. They are major regulators of transcription and are also important in other cellular processes.

Objective: The review provides an updated summary of HDAC pharmacological inhibition in clinical oncology, as well as in preclinical studies on inflammation and neurodegenerative diseases.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) activity was first discovered about 40 years ago, but it was not until the molecular identification of the first HDACs in 1996 that this family of enzymes gained prominence. In addition to histones, HDACs reverse lysine acetylation of various non-histone proteins located in the nucleus and the cytoplasm. Here, we examine the nuclear roles of these enzymes, with a specific focus on their active crosstalk with different chromatin regulators.

View Article and Find Full Text PDF

Thyroid hormone (T(3)) regulates the function of many tissues within the body. The effects of T(3) have largely been attributed to the modulation of thyroid hormone receptor-dependent gene transcription. However, nongenomic actions of T(3) via the initiation of signaling events are emerging in a number of cell types.

View Article and Find Full Text PDF

Mitochondrial myopathy patients (MMPs) have impaired oxidative phosphorylation and exercise intolerance. Endurance training of MMPs improves exercise tolerance, but also increases mutational load. To assess the regulation of mitochondrial content in MMPs, we measured proteins involved in 1) biogenesis, 2) oxidative stress, and 3) apoptosis in MMPs and healthy controls (HCs) both before and after endurance training.

View Article and Find Full Text PDF