Publications by authors named "Donald R Shaffer"

Article Synopsis
  • Scientists found a molecule called NR4A1 that helps cancer cells survive in a protective environment.
  • They created a special drug called NR-V04 that can remove NR4A1 from cells quickly and safely, making it easier for the body's immune system to fight cancer.
  • Tests showed that NR-V04 not only shrinks tumors but also helps important immune cells become stronger, making it a promising treatment for cancers like melanoma.
View Article and Find Full Text PDF

Tumor-associated macrophages (TAM) play an important role in maintaining the immunosuppressive state of the tumor microenvironment (TME). High levels of CD163+ TAMs specifically are associated with poor prognosis in many solid tumor types. Targeting TAMs may represent a key approach in development of the next generation of cancer immune therapeutics.

View Article and Find Full Text PDF

The presence of T regulatory (Treg) cells in the tumor microenvironment is associated with poor prognosis and resistance to therapies aimed at reactivating anti-tumor immune responses. Therefore, depletion of tumor-infiltrating Tregs is a potential approach to overcome resistance to immunotherapy. However, identifying Treg-specific targets to drive such selective depletion is challenging.

View Article and Find Full Text PDF

Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment.

View Article and Find Full Text PDF

Targeted T cells are emerging as effective non-toxic therapies for cancer. Multiple elements, however, contribute to the overall pathogenesis of cancer through both distinct and redundant mechanisms. Hence, targeting multiple cancer-specific markers simultaneously could result in better therapeutic efficacy.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target.

View Article and Find Full Text PDF

Outcomes for patients with glioblastoma (GBM) remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)-13Rα2, epidermal growth factor receptor variant III (EGFRvIII), or human epidermal growth factor receptor 2 (HER2) has shown promise for the treatment of gliomas in preclinical models and in a clinical study (IL-13Rα2). However, targeting IL-13Rα2 and EGFRvIII is associated with the development of antigen loss variants, and there are safety concerns with targeting HER2.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary brain cancer in adults and is virtually incurable. Recent studies have shown that cytomegalovirus (CMV) is present in majority of GBMs. To evaluate whether the CMV antigens pp65 and IE1, which are expressed in GBMs, could be targeted by CMV-specific T cells, we measured the frequency of T cells targeting pp65 and IE1 in the peripheral blood of a cohort of 11 sequentially diagnosed CMV-seropositive GBM patients, and evaluated whether it was feasible to expand autologous CMV-specific T cells for future clinical studies.

View Article and Find Full Text PDF

Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here, we report such a patient.

View Article and Find Full Text PDF

Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma.

View Article and Find Full Text PDF

Background Aims: Hematopoietic stem cell transplant (HSCT) is the treatment of choice for a proportion of patients with hematologic malignancies as well as for non-malignant diseases. However, viral infections, particularly Epstein-Barr virus (EBV), cytomegalovirus (CMV) and adenovirus (Ad), remain problematic after transplant despite the use of antiviral drugs. We have shown that cytotoxic T lymphocytes (CTL) generated against CMV-pp65, EBV and Ad antigens in a single culture are capable of controlling infections with all three viruses after HSCT.

View Article and Find Full Text PDF

T-cell therapy with genetically modified T cells targeting CD19 or CD20 holds promise for the immunotherapy of hematologic malignancies. These targets, however, are only present on B cell-derived malignancies, and because they are broadly expressed in the hematopoietic system, their targeting may have unwanted consequences. To expand T-cell therapies to hematologic malignancies that are not B cell-derived, we determined whether T cells can be redirected to CD70, an antigen expressed by limited subsets of normal lymphocytes and dendritic cells, but aberrantly expressed by a broad range of hematologic malignancies and some solid tumors.

View Article and Find Full Text PDF

Epstein-Barr virus-associated lymphoproliferative diseases (EBV-LPD) after hematopoietic stem cell transplantation or solid-organ transplantation remain a serious and potentially life-threatening complication. In the last decade, outcomes for EBV-LPD have significantly improved. Key to this success was the development of early detection methods, such as serial measurements of EBV-DNA load in the peripheral blood of transplant recipients.

View Article and Find Full Text PDF

An optimized antigen-presenting cell for tumor immunotherapy should produce a robust antigen specific cytotoxic T lymphocytes (CTL) response to tumor-associated antigens, which can persist in vivo and expand on antigen reencounter. Interleukin (IL)-21 synergizes with other gamma-chain cytokines to enhance the frequency and cytotoxicity of antigen-specific CTL. As T cells themselves may serve as effective antigen-presenting cells (T antigen-presenting cells; TAPC) and may be useful in vivo as cellular vaccines, we examined whether CD8(+) T cells genetically modified to produce IL-21 could induce immune responses to tumor associated antigen peptides in healthy human leukocyte antigen-A2(+) donors.

View Article and Find Full Text PDF