Nrf2 defense is a very important cellular mechanism to control oxidative stress, which is implicated in wound healing. Nrf2 can induce many cytoprotective genes, including HO-1, NQO1 and G6PD. Among many natural products that have been reported as Nrf2 activators, sulforaphane and curcumin have been studied more widely than any others, and both are in clinical trials for non-cancerous disorders.
View Article and Find Full Text PDFEthnopharmacological Relevance: Hot aqueous extracts of the plant Barleria lupulina (BL) are used for treating inflammatory conditions and diabetic vascular complications.
Aim Of The Study: The goal was to identify active compounds in hot aqueous extracts of BL (HAE-BL) that are consistent with a role in reducing inflammation and reducing the vascular pathology associated with diabetes. In particular, we examined activation of the Nrf2 cell defense pathway because our initial findings indicated that HAE-BL activates Nrf2, and because Nrf2 is known to suppress inflammation.
The Nrf2 (NFE2L2) cell defense pathway protects against oxidative stress and disorders including cancer and neurodegeneration. Although activated modestly by oxidative stress alone, robust activation of the Nrf2 defense mechanism requires the additional presence of co-factors that facilitate electron exchange. Various molecules exhibit this co-factor function, including sulforaphane from cruciferous vegetables.
View Article and Find Full Text PDFPurpose: Calpain overexpression is implicated in aberrant angiogenesis. We hypothesized that calpain inhibition (MDL28170) would improve collateral perfusion in a swine model with hypercholesterolemia and chronic myocardial ischemia.
Methods: Yorkshire swine fed a high cholesterol diet for 4 weeks underwent surgical placement of an ameroid constrictor to their left circumflex coronary artery.
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration.
View Article and Find Full Text PDFBackground: Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration.
View Article and Find Full Text PDFArchitecturally defective, leaky blood vessels typify pathologic angiogenesis induced by vascular endothelial growth factor-A (VEGF-A). Such neovascular defects aggravate disease pathology and seriously compromise the therapeutic utility of VEGF. Endothelial cell (EC) transduction with active L61Rac1 strongly improved VEGF-driven angiogenesis in vivo as measured by increased neovascular density, enhanced lumen formation, and reduced vessel leakiness.
View Article and Find Full Text PDFVascular endothelial growth factor-A (VEGF) typically induces abnormal angiogenesis in the adult, thereby aggravating disease pathology and limiting utility of VEGF for therapeutic angiogenesis. To identify strategies for rectifying defects in pathological VEGF neovessels, we investigated consequences of modulating the Rho GTPase Cdc42. In a mouse skin model of VEGF-driven pathological angiogenesis, transduction with active Cdc42 (L28Cdc42) markedly improved VEGF neovessels, as measured by increased lumen formation, enlarged vessel diameter, and enhanced perfusion of macromolecular tracers.
View Article and Find Full Text PDFIn ischemic retinopathies, unrelieved hypoxia induces the formation of architecturally abnormal, leaky blood vessels that damage retina and ultimately can cause blindness. Because these newly formed blood vessels are functionally defective, they fail to alleviate underlying hypoxia, resulting in more pathological neovascularization and more damage to retina. With an established model of ischemic retinopathy, we investigated inhibition of glycogen synthase kinase-3β (GSK-3β) as a means for improving the architecture and functionality of pathological blood vessels in retina.
View Article and Find Full Text PDFIn ischemic retinopathies, underlying hypoxia drives abnormal neovascularization that damages retina and causes blindness. The abnormal neovasculature is tortuous and leaky and fails to alleviate hypoxia, resulting in more pathological neovascularization and retinal damage. With an established model of ischemic retinopathy we found that calpain inhibitors, when administered in moderation, reduced architectural abnormalities, reduced vascular leakage, and most importantly reduced retinal hypoxia.
View Article and Find Full Text PDFMol Biol Cell
February 2010
Vascular endothelial growth factor (VEGF) is best known as a cytokine essential for embryonic vasculogenesis and for the angiogenesis associated with various pathologies including cancer. However, VEGF also serves other functions that are less widely recognized. An early study (Berse et al.
View Article and Find Full Text PDFPurpose Of Review: We discuss very recent studies that address the critical role of extracellular matrix in controlling the balance between vascular morphogenesis and regression. Much of this work suggests that a balance mechanism exists for controlling the extent of tissue vascularization involving downstream signaling events regulating endothelial cell behaviors in relation to their interactions with extracellular matrix molecules.
Recent Findings: Endothelial gene expression changes and signaling lead to events that not only stimulate vascular morphogenesis but also suppress mechanisms mediated through pro-regression factors such as Rho kinase.
Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis. Overexpression of TR3 in human umbilical vein endothelial cells (HUVECs) resulted in VEGF-A-independent proliferation, survival, and induction of several cell cycle genes, whereas expression of antisense TR3 abrogated the response to VEGF-A in these assays and also inhibited tube formation.
View Article and Find Full Text PDFNormal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is critical for all aspects of vascular biology. In concert with supporting cells, endothelial cells (ECs) assemble a laminin-rich basement membrane matrix that provides structural and organizational stability. During the onset of angiogenesis, this basement membrane matrix is degraded by proteinases, among which membrane-type matrix metalloproteinases (MT-MMPs) are particularly significant.
View Article and Find Full Text PDFAngiogenesis is a complex process involving the organization of proliferating endothelial cells into new blood vessels. Both in vivo models and in vitro models are important for investigating angiogenesis and for defining the involvement of specific molecules. This chapter describes a basic mouse model of vascular endothelial growth factor-driven angiogenesis in mouse skin together with a modified version of this model in which retrovirus-packaging cells are included as a means to efficiently achieve retroviral transduction in vivo.
View Article and Find Full Text PDFVascular endothelial growth factor-A (VEGF-A) is strongly up-regulated in wounded cutaneous tissue and promotes repair-associated angiogenesis. However, little is known about its role in lymphatic regeneration of the healing skin. We studied wound healing in transgenic mice that overexpress VEGF-A specifically in the epidermis and in wild-type mice in the absence or presence of inhibitors of VEGF-A signaling.
View Article and Find Full Text PDFInterstitial collagen I stimulates microvascular endothelial cells to form solid cords that imitate precapillary structures found during angiogenesis. Time-lapse microscopy identified cell retraction and disruption of cell-cell contacts as early critical steps in collagen I-induced capillary morphogenesis. These early stages paralleled collagen I activation of Src kinase and GTPase Rho through beta1 integrins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2004
The mechanisms that control organization of endothelial cells (ECs) into new blood vessels are poorly understood. We hypothesized that the GTPase Rho, which regulates cytoskeletal architecture, is important for EC organization during neovascularization. To test this hypothesis, we designed a highly versatile mouse skin model that used vascular endothelial growth factor-expressing cells together with packaging cells producing retroviruses encoding RhoA GTPase mutants.
View Article and Find Full Text PDFAngiogenesis requires endothelial cell survival and proliferation, which depend upon cytokine stimulation together with integrin-mediated cell adhesion to extracellular matrix; however, the question of which specific integrins are the best targets for suppressing neovascularization is controversial and unresolved. Therefore, we designed experiments to compare contributions of individual integrins from both the alphav and beta1 integrin subfamilies. With immobilized antibodies, we determined that adhesion through integrins alpha1beta1, alpha2beta1, alphavbeta3, and alphavbeta5 each individually supported dermal microvascular endothelial cell survival.
View Article and Find Full Text PDFCollagen I provokes endothelial cells to assume a spindle-shaped morphology and to align into solid cord-like assemblies. These cords closely imitate the solid pre-capillary cords of embryonic angiogenesis, raising interesting questions about underlying mechanisms. Studies described here identify a critical mechanism beginning with collagen I ligation of integrins alpha(1)beta(1) and alpha(2)beta(1), followed by suppression of cyclic AMP and cyclic AMP (cAMP)-dependent protein kinase A, and marked induction of actin polymerization to form prominent stress fibers.
View Article and Find Full Text PDFThe goal of this study was to develop a sensitive, simple, and widely applicable assay to measure copy numbers of specific mRNAs using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and identify a profile of gene expression closely associated with angiogenesis. We measured a panel of nine potential angiogenesis markers from a mouse transgenic model of prostate adenocarcinoma (TRAMP) and a mouse skin model of vascular endothelial growth factor (VEGF)-driven angiogenesis. In both models, expression of VEGF correlated with expression of mRNAs encoding other angiogenic cytokines (angiopoietin-1 and angiopoietin-2), endothelial cell receptor tyrosine kinases (Flt-1, KDR, Tie-1), and endothelial cell adhesion molecules (VE-cadherin, PECAM-1).
View Article and Find Full Text PDFAngiogenesis is a complex process, involving functional cooperativity between cytokines and endothelial cell (EC) surface integrins. In this study, we investigated the mechanisms through which the alpha(1)beta(1) and alpha(2)beta(1) integrins support angiogenesis driven by vascular endothelial growth factor (VEGF). Dermal microvascular EC attachment through either alpha(1)beta(1) or alpha(2)beta(1) supported robust VEGF activation of the Erk1/Erk2 (p44/42) mitogen-activated protein kinase signal transduction pathway that drives EC proliferation.
View Article and Find Full Text PDF