Loss of muscle mass is a major concern for long duration spaceflight. However, due to the need for specialized equipment, muscle size has only been assessed before and after spaceflight where ~20% loss is observed. Here, we demonstrate the utility of teleguided self-ultrasound scanning (Tele-SUS) to accurately monitor leg muscle size in astronauts during spaceflight.
View Article and Find Full Text PDFA cone-shaped meniscus of electrified fluids, often called a Taylor cone, is observed in rain drops and lightning and employed in various physical instruments and experimental techniques, but the way it evolves from a rounded shape to a cone is a long-standing puzzle. Earth's gravity and microgravity measurements on the meniscus whose height is just shy of droplet ejection reveal that field-driven cusp evolution exhibits a universal self-similarity insensitive to the forcing field and scaled by the fluid surface tension and density. Our work paves the way for dynamic control of field-driven phenomena in fluids.
View Article and Find Full Text PDFBackground: A number of ophthalmic findings including optic disc edema, globe flattening, and choroidal folds have been observed in several astronauts after long-duration space flights. The authors report the first astronaut with previously documented postflight ophthalmic abnormalities who developed new pathological changes after a repeat long-duration mission.
Methods: A case study of an astronaut with 2 long-duration (6 months) exposures to microgravity.