Publications by authors named "Donald R Lueking"

An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.

View Article and Find Full Text PDF

Nanoscale sensing arrays utilizing the unique properties of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots are being developed for toxin detection applications. This paper describes an innovative method to activate bacteriorhodopsin-based electrodes with the optical output of quantum dots, producing an enhanced electrical response from the protein. Results show that the photonic emission of CdSe/ZnS quantum dots is absorbed by the bacteriorhodopsin retinal and initiates the proton pumping sequence, resulting in an electrical output from a bacteriorhodopsin-based electrode.

View Article and Find Full Text PDF

Suppressive subtractive hybridization has been utilized to generate a cDNA library of genes differentially expressed in naphthalene grown cells of Pseudomonas fluorescens. The library was devoid of genes known to be associated with naphthalene catabolism, but was enriched in genes related to cellular uptake and efflux systems. The gene for OmpW, which was present in the cDNA library and has been proposed to encode a porin for the transport of hydrophobic molecules, was isolated, cloned, and sequenced.

View Article and Find Full Text PDF

The utility of employing biogenerated ferric iron as an oxidant for the recycling of scrap metal has been demonstrated using continuously growing cells of the extremophilic organism Acidithiobacillus ferrooxidans. A ferric iron rich (70 mol%) lixiviant resulting from bioreactor based growth of A. ferrooxidans readily solubilized target scrap metal with the resultant generation of a leachate containing elevated ferrous iron levels and solubilized copper previously resident in the scrap metal.

View Article and Find Full Text PDF

Although lava-rock-based biofilters have demonstrated their efficiencies for hydrogen sulfide (H2S) removal found in odorous air emissions, the biogeochemical basis for this removal is unclear. In this study, samples of lava rock and rinse water from biofilters at Cedar Rapids Water Pollution Control Facilities (Iowa) were used to study the structure and chemical composition of lava rock and to identify the predominant microorganism(s) present in lava-rock-based biofilters. It was found that iron, in the form of Fe2+ and Fe3+, was present in lava rock.

View Article and Find Full Text PDF

A dynamic model that describes the biofiltration process for hydrogen sulfide removal from wastewater treatment plant air emissions was calibrated and validated using pilot- and full-scale biofilter data obtained from the Cedar Rapids (Iowa) Water Pollution Control Facilities. After calibration, the model was found to predict the dynamic effluent concentrations of the pilot- and full-scale biofilters well, with the measured data falling within 58 to 80% of the model output values. In addition, the model predicted the trend of the field data, even under field conditions of changing input concentration and at effluent concentrations below 1 ppm by volume.

View Article and Find Full Text PDF