Publications by authors named "Donald R Gerecke"

Article Synopsis
  • Amino-Plex (SM1997) is a cosmeceutical spray designed to treat skin dryness and aging by containing electrolytes, amino acids, and other beneficial compounds.
  • It aims to enhance cell repair by increasing oxygen levels, improving glucose transport, and stimulating collagen synthesis, which helps in healing damaged skin.
  • Recent tests show that SM1997 helps retain corneal epithelial attachment and reduces enzyme activation that causes damage after exposure to mustard gas, indicating its potential for further research in treating such injuries.
View Article and Find Full Text PDF

Sulfur mustard (SM) is a highly toxic blistering agent thought to mediate its action, in part, by activating matrix metalloproteinases (MMPs) in the skin and disrupting components of the basement membrane zone (BMZ). Type IV collagenases (MMP-9) degrade type IV collagen in the skin, a major component of the BMZ at the dermal-epidermal junction. In the present studies, a type IV collagenase inhibitor, N-hydroxy-3-phenyl-2-(4-phenylbenzenesulfonamido) propanamide (BiPS), was tested for its ability to protect the skin against injury induced by SM in the mouse ear vesicant model.

View Article and Find Full Text PDF

Laminin-332 is a basement membrane protein composed of three genetically distinct polypeptide chains that actively promote both skin epidermal cell adhesion and migration. Proteolytic fragments of the laminin γ2 chain stimulate migration and scattering of keratinocytes and cancer cells. Sulfur mustard (SM) is a bifunctional alkylating agent that induces separation of basal keratinocytes from the dermal-epidermal junction and invokes a strong inflammatory response leading to delayed wound repair.

View Article and Find Full Text PDF

Sulfur Mustard (SM) is a potent vesicant or blistering agent. It is a highly reactive bi-functional alkylating agent that cross links proteins, DNA, and other cellular components. Laminin 332 is a heterotrimer glycoprotein and a crucial skin component that attaches the epidermal basal keratinocytes to the dermis.

View Article and Find Full Text PDF
Article Synopsis
  • Sulfur mustard (SM) is a chemical warfare agent that causes severe skin damage, leading to inflammation, blisters, and tissue destruction as seen in mouse ear studies.
  • The research revealed that exposure to SM results in increased accumulation of immune cells (macrophages and neutrophils) in the skin, along with significant rises in inflammatory cytokines like interleukin and tumor necrosis factor over at least a week.
  • The study highlights the role of these inflammatory mediators in worsening skin injury from SM, suggesting that targeting the inflammatory response could help treat or lessen the damage caused by this chemical agent.
View Article and Find Full Text PDF

Mustard exposures result in epithelial-stromal separations in the cornea and epidermal-dermal separations in the skin. Large blisters often manifest in skin, while the cornea develops microblisters, and, when enough form, the epithelium sloughs. If the exposure is severe, healing can be imperfect and can result in long-term adverse consequences.

View Article and Find Full Text PDF

Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min.

View Article and Find Full Text PDF

Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing.

View Article and Find Full Text PDF

Purpose: Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial-stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial-stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma.

View Article and Find Full Text PDF

Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury.

View Article and Find Full Text PDF

Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing.

View Article and Find Full Text PDF

The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24h to 168h post exposure.

View Article and Find Full Text PDF

Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control.

View Article and Find Full Text PDF

Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™).

View Article and Find Full Text PDF

Purpose: The goals of this study were (1) to compare the injury at the basement membrane zone (BMZ) of rabbit corneal organ cultures exposed to half mustard (2 chloroethyl ethyl sulfide, CEES) and nitrogen mustard with that of in vivo rabbit eyes exposed to sulfur mustard (SM); (2) to test the efficacy of 4 tetracycline derivatives in attenuating vesicant-induced BMZ disruption in the 24-h period postexposure; and (3) to use the most effective tetracycline derivative to compare the improvement of injury when the drug is delivered as drops or hydrogels to eyes exposed in vivo to SM.

Methods: Histological analysis of hematoxylin and eosin–stained sections was performed; the ultrastructure of the corneal BMZ was evaluated by transmission electron microscopy; matrix metalloproteinase-9 was assessed by immunofluorescence; doxycycline as drops or a hydrogel was applied daily for 28 days to eyes exposed in vivo to SM. Corneal edema was assessed by pachymetry and the extent of neovascularization was graded by length of longest vessel in each quadrant.

View Article and Find Full Text PDF

Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum.

View Article and Find Full Text PDF

Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant.

View Article and Find Full Text PDF

Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period.

View Article and Find Full Text PDF

Epithelial cell migration during wound healing is regulated in part by enzymatic processing of laminin-332 (formerly LN-5), a heterodimer formed from alpha, beta, and gamma polypeptide chains. Under static conditions, laminin-332 is secreted into the extracellular matrix as a proform and has two chains processed to smaller forms, allowing it to anchor epithelial cells to the basement membrane of the dermis. During incisional wounding, laminin gamma2 chains in particular are processed to smaller sizes and function to promote epithelial sheet migration over the wound bed.

View Article and Find Full Text PDF

Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods).

View Article and Find Full Text PDF

Collagen XXIII is a member of the transmembranous subfamily of collagens containing a cytoplasmic domain, a membrane-spanning hydrophobic domain, and three extracellular triple helical collagenous domains interspersed with non-collagenous domains. We cloned mouse, chicken, and humanalpha1(XXIII) collagen cDNAs and showed that this non-abundant collagen has a limited tissue distribution in non-tumor tissues. Lung, cornea, brain, skin, tendon, and kidney are the major sites of expression.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs), a class of enzymes responsible for the degradation of extracellular matrix proteins, play important roles in inflammatory and immune responses. In skin, MMP-2 (gelatinase A) and MMP-9 (gelatinase B) are normally inactive but can be expressed during tissue injury. Both degrade collagen IV and other critical components of the basement membrane zone that separates the epidermis from the dermis.

View Article and Find Full Text PDF

Fibril-associated collagens with interrupted triple helices (FACITs) XII and XIV act as fibril organizers and assist in the maintenance of uniform fibril size. We investigated the spatial expression patterns of collagens XII and XIV in cryptogenic organizing pneumonia (COP)/organizing pneumonia (OP) and in idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP) and compared them to normal human lung. Study subjects included 10 patients with COP/OP, 10 patients with IPF/UIP, and 8 control subjects.

View Article and Find Full Text PDF

The accumulation of neutrophils at sites of tissue injury or infection is mediated by chemotactic factors released as part of the inflammatory process. Some of these factors are generated as a direct consequence of tissue injury or infection, including degradation fragments of connective tissue collagen and bacterial- or viral-derived peptides containing collagen-related structural motifs. In these studies, we examined biochemical mechanisms mediating the biologic activity of synthetic polypeptides consisting of repeated units of proline (Pro), glycine (Gly), and hydroxyproline (Hyp), major amino acids found within mammalian and bacterial collagens.

View Article and Find Full Text PDF