Publications by authors named "Donald M Kuhn"

Introduction: It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome.

View Article and Find Full Text PDF

The synthetic cathinones are man-made compounds derived from the naturally occurring drug cathinone, which is found in the khat plant. The drugs in this pharmacological class that will be the focus of this chapter include mephedrone, MDPV, methcathinone and methylone. These drugs are colloquially known as "bath salts".

View Article and Find Full Text PDF

Cocaine is a highly addictive psychostimulant drug of abuse that constitutes an ongoing public health threat. Emerging research is revealing that numerous peripheral effects of this drug may serve as conditioned stimuli for its central reinforcing properties. The gut microbiota is emerging as one of these peripheral sources of input to cocaine reward.

View Article and Find Full Text PDF

Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO production (VCO ), and O consumption (VO ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2 mice.

View Article and Find Full Text PDF

Gulf war illness (GWI) is a chronic disorder of unknown etiology characterized by multiple symptoms such as pain, fatigue, gastrointestinal disturbances and neurocognitive problems. Increasing evidence suggests that gut microbiome perturbations play a key role in the pathology of this disorder. GWI courses with gut microbiota alterations and their metabolites (e.

View Article and Find Full Text PDF

The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits.

View Article and Find Full Text PDF

Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear.

View Article and Find Full Text PDF

Gulf War Illness (GWI) is a chronic health condition that appeared in Veterans after returning home from the Gulf War. The primary symptoms linked to deployment are posttraumatic stress disorder, mood disorders, GI problems and chronic fatigue. At first glance, these symptoms are difficult to ascribe to a single pathological mechanism.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is often accompanied by gastrointestinal and metabolic disruptions. These systemic manifestations suggest possible involvement of the gut microbiota in head injury outcomes. Although gut dysbiosis after single, severe TBI has been documented, the majority of head injuries are mild, such as those that occur in athletes and military personnel exposed to repetitive head impacts.

View Article and Find Full Text PDF

The list of pharmacological agents that can modify the gut microbiome or be modified by it continues to grow at a high rate. The greatest amount of attention on drug-gut microbiome interactions has been directed primarily at pharmaceuticals used to treat infection, diabetes, cardiovascular conditions and cancer. By comparison, drugs of abuse and addiction, which can powerfully and chronically worsen human health, have received relatively little attention in this regard.

View Article and Find Full Text PDF

The synthetic cathinones are derived from the naturally occurring drug cathinone found in the khat plant (Catha edulis) and have chemical structures and neurochemical consequences similar to other psychostimulants. This class of new psychoactive substances (NPS) also has potential for use and abuse coupled with a range of possible adverse effects including neurotoxicity and lethality. This review provides a general background of the synthetic cathinones in terms of the motivation for and patterns and demographics of their use as well as the behavioral and physiological effects that led to their spread as abused substances and consequent regulatory control.

View Article and Find Full Text PDF

We examined the impact of serotonin (5-HT) on the frequency and duration of central apneic events and the frequency of accompanying arousals during nonrapid and rapid eye movement (NREM and REM, respectively) sleep across the light/dark cycle. Electroencephalography, electromyography, core body temperature, and activity were recorded for 24 h following implantation of telemeters in wild-type (Tph2) and tryptophan hydroxylase 2 knockout (Tph2) male mice. The frequency and duration of central apneic events were increased, the number of apneic events coupled to an arousal was decreased, and the ventilatory sensitivity to hypoxia and hypercapnia was decreased in the Tph2 compared with the Tph2 mice during NREM sleep.

View Article and Find Full Text PDF

Rationale: Mephedrone is a commonly abused constituent of "bath salts" and has many pharmacological effects in common with methamphetamine. Despite their structural similarity, mephedrone differs significantly from methamphetamine in its effects on core body temperature and dopamine nerve endings. The reasons for these differences remain unclear.

View Article and Find Full Text PDF

Methamphetamine and mephedrone are designer drugs with high abuse liability and they share extensive similarities in their chemical structures and neuropharmacological effects. However, these drugs differ in one significant regard: methamphetamine elicits dopamine neurotoxicity and mephedrone does not. From a structural perspective, mephedrone has a β-keto group and a 4-methyl ring addition, both of which are lacking in methamphetamine.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a neurotrophin highly expressed in the brain with a potent influence on several aspects of neuronal function. Since its discovery in the early 1980s, BDNF has prompted a great interest in better understanding its physiological role and has been established as the main central neurotrophic factor. BDNF is initially synthesized as a precursor, pro-BDNF, which is then cleaved to form mature BDNF (m-BDNF).

View Article and Find Full Text PDF

Aim: To advance our understanding of regional and temporal cellular responses to repeated mild traumatic brain injury (rmTBI), we used a mouse model of rmTBI that incorporated acceleration, deceleration and rotational forces.

Materials & Methods: A modified weight-drop method was used to compare two inter-injury intervals, rmTBI-short (five hits delivered over 3 days) and rmTBI-long (five hits delivered over 15 days). Regional investigations of forebrain and midbrain histological alterations were performed at three post-injury time points (immediate, 2 weeks and 6 weeks).

View Article and Find Full Text PDF

Mephedrone (MEPH) is a -ketoamphetamine stimulant drug of abuse that is often a constituent of illicit bath salts formulations. Although MEPH bears remarkable similarities to methamphetamine (METH) in terms of chemical structure, as well as its neurochemical and behavioral effects, it has been shown to have a reduced neurotoxic profile compared with METH. The addition of a -keto moiety and a 4-methyl ring substituent to METH yields MEPH, and a loss of direct neurotoxic potential.

View Article and Find Full Text PDF

Repetitive mild traumatic brain injury (rmTBI), resulting from insults caused by an external mechanical force that disrupts normal brain function, has been linked to the development of neurodegenerative diseases, such as chronic traumatic encephalopathy and Alzheimer disease; however, neither the severity nor frequency of head injury required to trigger adverse behavioral outcomes is well understood. In this study, the administration of 30 head impacts using two different weights to lightly anesthetized, completely unrestrained mice established a paradigm that simulates the highly repetitive nature of sports- and military-related head injury. As the number of head impacts increases, the time to recover consciousness diminishes; however, both the sensorimotor function and behavioral outcomes of impacted mice evolve during the ensuing weeks.

View Article and Find Full Text PDF

The present review briefly explores the neurotoxic properties of methcathinone, mephedrone, methylone, and methylenedioxypyrovalerone (MDPV), four synthetic cathinones most commonly found in "bath salts." Cathinones are β-keto analogs of the commonly abused amphetamines and display pharmacological effects resembling cocaine and amphetamines, but despite their commonalities in chemical structures, synthetic cathinones possess distinct neuropharmacological profiles and produce unique effects. Among the similarities of synthetic cathinones with their non-keto analogs are their targeting of monoamine systems, the release of neurotransmitters, and their stimulant properties.

View Article and Find Full Text PDF

We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.

View Article and Find Full Text PDF

A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period.

View Article and Find Full Text PDF

Much of the social behavior in which rodents engage is related to reproduction, such as maintaining a breeding territory, seeking mates, mating, and caring for their young. Rodents belong to the internally fertilizing species that require sexual behavior for reproduction. The dyadic, heterosexual patterns of most mammalian species are sexually dimorphic, but they also share mutual components in both sexes: sexual attraction is reciprocal, sexual initiative is assumed, appetitive behavior is engaged in, and mating involves consummatory and postconsummatory phases in females as well as in males.

View Article and Find Full Text PDF

It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95-100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE).

View Article and Find Full Text PDF

Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of 'bath salts' and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties.

View Article and Find Full Text PDF

Maternal behavior is probably the most important pro-social behavior in female mammals, ensuring both the development and survival of her offspring. Signals driving maternal behaviors are complex and involve several brain areas, most of which are innervated by serotonin. Serotonin transmission influences maternal processes indirectly through release of maternally-relevant hormones such as prolactin, oxytocin and vasopressin, but it can also have more direct effects on survival and the growth rate of offspring, as well as on maternal care, aggression and pup killing.

View Article and Find Full Text PDF