Publications by authors named "Donald M Crothers"

Article Synopsis
  • Calicheamicin γ1(I) (Cal) is a specialized molecule that combines a DNA-binding part and a DNA-cleaving part, making it very effective at cutting DNA at specific locations.
  • The study explored how the two different parts—the aryl-tetrasaccharide and the calicheamicinone—contribute to the process of binding to and cleaving DNA.
  • Findings showed that these components work together remarkably well, revealing insights that could help in designing better drugs in the future.
View Article and Find Full Text PDF

Sequence-specific optical signals are used to establish long-range sequence order and identification for fragments hundreds of kilo bases in length.

View Article and Find Full Text PDF

We have investigated the anomalously weak binding of human papillomavirus (HPV) regulatory protein E2 to a DNA target containing the spacer sequence TATA. Experiments in magnesium (Mg(2+)) and calcium (Ca(2+)) ion buffers revealed a marked reduction in cutting by DNase I at the CpG sequence in the protein-binding site 3' to the TATA spacer sequence, Studies of the cation dependence of DNA-E2 affinities showed that upon E2 binding the TATA sequence releases approximately twice as many Mg(2+) ions as the average of the other spacer sequences. Binding experiments for TATA spacer relative to ATAT showed that in potassium ion (K(+)) the E2 affinity of the two sequences is nearly equal, but the relative dissociation constant (K(d)) for TATA increases in the order K(+ )< Na(+ )< Ca(2+ )< Mg(2+).

View Article and Find Full Text PDF

Mismatch repair (MMR) is essential for eliminating biosynthetic errors generated during replication or genetic recombination in virtually all organisms. The critical first step in Escherichia coli MMR is the specific recognition and binding of MutS to a heteroduplex, containing either a mismatch or an insertion/deletion loop of up to four nucleotides. All known MutS homologs recognize a similar broad spectrum of substrates.

View Article and Find Full Text PDF

Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.

View Article and Find Full Text PDF

Regulation of gene expression involves formation of specific protein-DNA complexes in which the DNA is often bent or sharply kinked. Kinetics measurements of DNA bending when in complex with the protein are essential for understanding the molecular mechanism that leads to precise recognition of specific DNA-binding sites. Previous kinetics measurements on several DNA-bending proteins used stopped-flow techniques that have limited time resolution of few milliseconds.

View Article and Find Full Text PDF

Integration host factor (IHF) is a prokaryotic protein required for the integration of lambda phage DNA into its host genome. An x-ray crystal structure of the complex shows that IHF binds to the minor groove of DNA and bends the double helix by 160 degrees [Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Cell 87:1295-1306]. We sought to dissect the complex formation process into its component binding and bending reaction steps, using stopped-flow fluorimetry to observe changes in resonance energy transfer between DNA-bound dyes, which in turn reflect distance changes upon bending.

View Article and Find Full Text PDF

The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility.

View Article and Find Full Text PDF

A riboswitch within the 5' untranslated region (UTR) of the Bacillus subtilis pbuE mRNA binds adenine and related analogues in the absence of protein factors; excess adenine added to bacterial growth media triggers activation of a reporter gene that carries this riboswitch. To assess whether the riboswitch reaches thermodynamic equilibrium, or is operated by the kinetics of ligand binding and RNA transcription, we examined the detailed equilibrium and kinetic parameters for the complex formation between the aptamer domain of this riboswitch and the ligands adenine, 2-aminopurine (2AP), and 2,6-diaminopurine (DAP). Using a fluorescence-based assay, we have confirmed that adenine and 2AP have nearly equal binding affinity, with KD values for 2AP ranging from 250 nM to 3 microM at temperatures ranging from 15 to 35 degrees C, while DAP binds with much higher affinity.

View Article and Find Full Text PDF

Riboswitches are genetic control elements that usually reside in untranslated regions of messenger RNAs. These folded RNAs directly bind metabolites and undergo allosteric changes that modulate gene expression. A flavin mononucleotide (FMN)-dependent riboswitch from the ribDEAHT operon of Bacillus subtilis uses a transcription termination mechanism wherein formation of an RNA-FMN complex causes formation of an intrinsic terminator stem.

View Article and Find Full Text PDF

Recognition of DNA by proteins relies on direct interactions with specific DNA-functional groups, along with indirect effects that reflect variable energetics in the response of DNA sequences to twisting and bending distortions induced by proteins. Predicting indirect readout requires knowledge of the variations in DNA curvature and flexibility in the affected region, which we have determined for a series of DNA-binding sites for the E2 regulatory protein by using the cyclization kinetics method. We examined 16 sites containing different noncontacted spacer sequences, which vary by more than three orders of magnitude in binding affinity.

View Article and Find Full Text PDF

We have developed a high-throughput approach to the labor-intensive problems of DNA cyclization, which we use to characterize DNA curvature and mechanical properties. The method includes a combinatorial approach to make the DNA constructs needed and automated real-time measurement of the kinetics using fluorescence. We validated the approach and investigated the flexibility of two kinds of nicked DNA and AT dinucleotide repeats.

View Article and Find Full Text PDF

DNA sequences containing short adenine tracts are intrinsically curved and play a role in transcriptional regulation. Despite many high-resolution NMR and x-ray studies, the origins of curvature remain disputed. Long-range restraints provided by 85 residual dipolar couplings were measured for a DNA decamer containing an adenine (A)(4)-tract and used to refine the structure.

View Article and Find Full Text PDF

DNA cyclization is potentially the most powerful approach for systematic quantitation of sequence-dependent DNA bending and flexibility. We extend the statistical mechanics of the homogeneous DNA circle to a model that considers discrete basepairs, thus allowing for inhomogeneity, and apply the model to analysis of DNA cyclization. The theory starts from an iterative search for the minimum energy configuration of circular DNA.

View Article and Find Full Text PDF

We used cyclization kinetics experiments and Monte Carlo simulations to determine a structural model for a DNA decamer containing the EcoRI restriction site. Our findings agree well with recent crystal and NMR structures of the EcoRI dodecamer, where an overall bend of seven degrees is distributed symmetrically over the molecule. Monte Carlo simulations indicate that the sequence has a higher flexibility, assumed to be isotropic, compared to that of a "generic" DNA sequence.

View Article and Find Full Text PDF

Integration host factor (IHF) is a heterodimeric Escherichia coli protein that plays essential roles in a variety of cellular processes including site-specific recombination, transcription, and DNA replication. The IHF-DNA interface extends over three helical turns and includes sequential minor groove contacts that present strong, sequence specific protection patterns against hydroxyl radical cleavage. Synchrotron X-ray footprinting has been used to follow the kinetics of formation of DNA-protein contacts in the IHF-DNA complex with single base-pair spatial, and millisecond time, resolution.

View Article and Find Full Text PDF

The matrix method of statistical mechanics is used to calculate equilibria for the binding of small molecules to polymers. When there is only one kind of binding site the problem is simple; some examples are given for illustrative purposes. If, however, the binding sites are not all equivalent and the bound molecules interact or interfere with each other, the problem is no longer trivial, being formally analogous with calculation of the helix-coil transition equilibrium in a heterogeneous polypeptide.

View Article and Find Full Text PDF