Chondrocytes are responsible for maintaining the cartilage that helps joints bear load and move smoothly. These cells typically respond to physiological compression with pathways consistent with matrix synthesis, and chondrocyte mechanotransduction is essential for homeostasis. In osteoarthritis (OA), chondrocyte mechanotransduction appears to be dysregulated, yet the mechanisms remain poorly understood.
View Article and Find Full Text PDFCells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix.
View Article and Find Full Text PDFChondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (<30min) chondrocyte response to sub-injurious, physiological compression by analyzing metabolomic profiles for human chondrocytes harvested from femoral heads of osteoarthritic donors.
View Article and Find Full Text PDFIn articular cartilage, chondrocytes reside within a gel-like pericellular matrix (PCM). This matrix provides a mechanical link through which joint loads are transmitted to chondrocytes. The stiffness of the PCM decreases in the most common degenerative joint disease, osteoarthritis.
View Article and Find Full Text PDFChondrocyte mechanotransduction is the process by which cartilage cells transduce mechanical loads into biochemical and biological signals. Previous studies have identified several pathways by which chondrocytes transduce mechanical loads, yet a general understanding of which signals are activated and in what order remains elusive. This study was performed to identify candidate mediators of chondrocyte mechanotransduction using SW1353 chondrocytes embedded in physiologically stiff agarose.
View Article and Find Full Text PDFCartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction.
View Article and Find Full Text PDF