Publications by authors named "Donald L Wise"

Relief of chronic pain is an important clinical problem requiring special care and approaches. The present study was designed for the construction of a controlled release system for local application of analgesics (hydromorphone (HM), morphine (M), and codeine (C)) and a local anesthetic, bupivacaine (BP). An interpenetrating network (IPN) drug release system was prepared by using a biocompatible, biodegradable copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and another biocompatible but synthetic, nondegradable polymer, poly (2- hydroxyethyl methacrylate), (PHEMA).

View Article and Find Full Text PDF

In this study we investigated the effects of materials prepared with electrical poling on neurite outgrowth in vitro and nerve regeneration in vivo. Neuro-2a cells were seeded on poled and unpoled poly(lactic-co-glycolic) (PLGA) films and observed at time periods 24, 48 and 72 h post-seeding. The percentage of cells with neurites and the neurites per cell were quantified using light microscopy.

View Article and Find Full Text PDF

We aimed to evaluate the antihyperalgesic efficacy of a combination of hydromorphone (HM) and bupivacaine (BP) delivered via controlled release from a biodegradable cylindrical rod. In vivo studies were performed using a rat model of thermal hyperalgesia induced by chronic constriction injury (CCI) of the sciatic nerve with loose ligatures. Poly(lactic-co-glycolic acid) (PLGA) rods (10 mm length, 1 mm diameter) loaded with HM (5 mg per rod), BP (5 mg per rod) or no drug (placebo) were implanted subcutaneously, in single or dual pairs, adjacent to the constriction injury, immediately after nerve ligation.

View Article and Find Full Text PDF

A porous, resorbable polymer composite based on poly(propylene glycol-co-fumaric acid) (PPF) was mechanically evaluated in vitro for use as a bone graft substitute and fracture fixative. The test material created a dynamic system capable of initially providing mechanical integrity to bony voids and a degradative mechanism for ingrowth by native bone. The unsaturated polymer, PPF, was crosslinked in the presence of effervescent agents to yield a porous microstructure upon curing.

View Article and Find Full Text PDF

The bioactivity of a nano-hydroxyapatite-augmented, bioresorbable bone graft substitute made from the unsaturated polyester, poly(propylene fumarate), was analyzed by evaluating biocompatibility and osteointegration of implants placed into a rat tibial defect. Three groups of eight animals each were evaluated by grouting bone graft substitutes into 3-mm holes that were made into the anteromedial tibial metaphysis of rats. Thus, a total of 24 animals was included in this study.

View Article and Find Full Text PDF

Purpose: Bioresorbable bone graft substitutes could eliminate disadvantages associated with the use of autografts, allografts, and other synthetic materials. The authors investigated the osteoinductive capacity of a bioresorbable bone graft substitute made from the unsaturated polyester poly(propylene glycol-co-fumaric acid) (PPF) for mandibular reconstruction in a rat model. The eventual intention is to use this material either as a stand-alone bone graft substitute or as an extender to autograft harvested from mandibular reconstruction sites.

View Article and Find Full Text PDF

The aim of this study was to evaluate biomechanically the healing of an osteochondral fragment created in the distal sheep femur in response to fixation with a resorbable composite screw made of polylactide and hydroxylapatite. Pure poly(L-lactide) screws were used for comparison. At follow-up times of 4 or 8 weeks, specimens were examined with standard radiography, biomechanics, and histology.

View Article and Find Full Text PDF

Using an established rat peripheral-nerve regeneration model, the authors have demonstrated enhancement of regeneration following subcutaneous priming of bioresorbable poly(lactic-co-glycolic)acid (PLGA) guides in vivo. Four weeks after nerve reconstruction, regeneration of the peripheral nerve through the cell-infiltrated guides displayed a significant increase in the total axon number and myelination status recorded in primed over unprimed guides, demonstrating the importance of cell-mediated events in the regeneration process. To define the different components enhancing nerve regeneration in this model, they have focused on identifying factors capable of eliciting Schwann-cell migration, since this has been identified as an early and necessary event in nerve regeneration.

View Article and Find Full Text PDF

Bioresorbable bone graft substitutes could alleviate disadvantages associated with the use of autografts, allografts, and other synthetic materials. However, little is known about the minimum autograft/extender ratio for a given material at which a sufficient osteoinductive effect is still seen. Therefore, we investigated a bioresorbable bone graft substitute made from the unsaturated polyester poly(propylene fumarate), PPF, at various mixing ratios with autograft.

View Article and Find Full Text PDF

A porous biodegradable scaffold coating for perforated and demineralized cortical bone allografts could maintain immediate structural recovery and subsequently allow normal healing and remodeling by promoting bony ingrowth and avoiding accelerated graft resorption. This new type of osteoconductive surface modification should improve allograft incorporation by promoting new bone growth throughout the biodegradable scaffold, hence encasing the graft with the recipient's own bone. We investigated the feasibility of augmenting orthotopically transplanted cortical bone grafts with osteoconductive biodegradable polymeric scaffold coatings.

View Article and Find Full Text PDF

The aim of this study was to evaluate the healing of an osteochondral fragment created in the distal sheep femur in response to fixation with a biodegradable polylactide/hydroxylapatite composite screw. Poly(L-lactide) screws were used for comparison. At follow-up times of 4 and 8 weeks, the specimens were examined with standard radiography and computed tomography, as well as with macro- and micro-histomorphometry.

View Article and Find Full Text PDF

The tissue response of subchondral bone to a biodegradable fixation device manufactured in the shape of a screw and made of polylactide with a hydroxyapatite buffer were implanted through the articular surface of the intercondylar portion of the distal rabbit femur. One screw was implanted per animal. The screws had a core diameter of 3.

View Article and Find Full Text PDF

Study Design: Three different types of biodegradable poly(L-lactide-co-D,L-lactide) cages with and without augmentation of a biodegradable poly(propylene glycol-cofumaric acid) scaffold were compared with autograft and metallic cages of the same design and size by determining the stiffness and failure load of the L4-L5 motion segment of cadaveric human spines.

Objectives: To determine how these devices limit the range of motion in the lumbar spine compared with a metallic cage. If biomechanically equivalent, biodegradable spinal fusion systems ultimately could reduce local stress shielding and diminish the incidence of clinical complications, including device-related osteopenia, implant loosening, and breakage.

View Article and Find Full Text PDF

Control of chronic, severe pain is a difficult and important clinical problem for most patients, especially those with cancer. Although current applications are insufficient for a satisfactory solution to this problem, the rate of disease incidence is increasing worldwide, thus making the problem more apparent. Based on this fact, this study was designed with the ultimate goal of formulating a controlled release system of pain relievers, mainly opioids, for the local treatment of pain to achieve satisfactory, fast, and less side effect-related relief and to provide a better life status for chronic pain patients.

View Article and Find Full Text PDF