Non-spatial models of competition between floating aquatic vegetation (FAV) and submersed aquatic vegetation (SAV) predict a stable state of pure SAV at low total available limiting nutrient level, , a stable state of only FAV for high , and alternative stable states for intermediate , as described by an S-shaped bifurcation curve. Spatial models that include physical heterogeneity of the waterbody show that the sharp transitions between these states become smooth. We examined the effects of heterogeneous initial conditions of the vegetation types.
View Article and Find Full Text PDFThe potential for a non-native plant species to invade a new habitat depends on broadscale factors such as climate, local factors such as nutrient availability, and the biotic community of the habitat into which the plant species is introduced. We developed a spatially explicit model to assess the risk of expansion of a floating invasive aquatic plant species (FAV), the water hyacinth (), an invader in the United States, beyond its present range. Our model used known data on growth rates and competition with a native submersed aquatic macrophyte (SAV).
View Article and Find Full Text PDFMangrove is one of the most productive and sensitive ecosystems in the world. Due to the complexity and specificity of mangrove habitat, the development of mangrove is regulated by several factors. Species distribution models (SDMs) are effective tools to identify the potential habitats for establishing and regenerating the ecosystem.
View Article and Find Full Text PDFTactile-feeding wading birds, such as wood storks and white ibises, require high densities of prey such as small fishes and crayfish to support themselves and their offspring during the breeding season. Prey availability in wetlands is often determined by seasonal hydrologic pulsing, such as in the subtropical Everglades, where spatial distributions of prey can vary through time, becoming heterogeneously clumped in patches, such as ponds or sloughs, as the wetland dries out. In this mathematical modeling study, we selected two possible foraging strategies to examine how they impact total energetic intake over a time scale of one day.
View Article and Find Full Text PDFUnderstanding mechanisms of coexistence is a central topic in ecology. Mathematical analysis of models of competition between two identical species moving at different rates of symmetric diffusion in heterogeneous environments show that the slower mover excludes the faster one. The models have not been tested empirically and lack inclusions of a component of directed movement toward favourable areas.
View Article and Find Full Text PDFAs many ecosystems worldwide are in peril, efforts to manage them sustainably require scientific advice. While numerous researchers around the world use a great variety of models to understand ecological dynamics and their responses to disturbances, only a small fraction of these models are ever used to inform ecosystem management. There seems to be a perception that ecological models are not useful for management, even though mathematical models are indispensable in many other fields.
View Article and Find Full Text PDFCarrying capacity is a key concept in ecology. A body of theory, based on the logistic equation, has extended predictions of carrying capacity to spatially distributed, dispersing populations. However, this theory has only recently been tested empirically.
View Article and Find Full Text PDFStressors such as antibiotics, herbicides, and pollutants are becoming increasingly common in the environment. The effects of stressors on populations are typically studied in homogeneous, nonspatial settings. However, most populations in nature are spatially distributed over environmentally heterogeneous landscapes with spatially restricted dispersal.
View Article and Find Full Text PDFAgent-based modelling (ABM) has become an established methodology in many areas of biology, ranging from the cellular to the ecological population and community levels. In plant science, two different scales have predominated in their use of ABM. One is the scale of populations and communities, through the modelling of collections of agents representing individual plants, interacting with each other and with the environment.
View Article and Find Full Text PDFTheor Popul Biol
February 2020
This paper analyzes source-sink systems with asymmetric dispersal between two patches. Complete analysis on the models demonstrates a mechanism by which the dispersal asymmetry can lead to either an increased total size of the species population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. For a large growth rate of the species in the source and a fixed dispersal intensity, (i) if the asymmetry is small, the population would persist in both patches and reach a density higher than that without dispersal, in which the population approaches its maximal density at an appropriate asymmetry; (ii) if the asymmetry is intermediate, the population persists in both patches but reaches a density less than that without dispersal; (iii) if the asymmetry is large, the population goes to extinction in both patches; (iv) asymmetric dispersal is more favorable than symmetric dispersal under certain conditions.
View Article and Find Full Text PDFWorldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models.
View Article and Find Full Text PDFMany aquatic ecosystems have deteriorated due to human activities and their restoration is often troublesome. It is proposed here that the restoration success of deteriorated lakes critically depends on hitherto largely neglected spatial heterogeneity in nutrient loading and hydrology. A modelling approach is used to study this hypothesis by considering four lake types with contrasting nutrient loading (point versus diffuse) and hydrology (seepage versus drainage).
View Article and Find Full Text PDFTheor Popul Biol
February 2019
Previous mathematical analyses have shown that, for certain parameter ranges, a population, described by logistic equations on a set of connected patches, and diffusing among them, can reach a higher equilibrium total population when the local carrying capacities are heterogeneously distributed across patches, than when carrying capacities having the same total sum are homogeneously distributed across the patches. It is shown here that this apparently paradoxical result is explained when the resultant differences in energy inputs to the whole multi-patch system are taken into account. We examine both Pearl-Verhulst and Original Verhulst logistic models and show that, when total input of energy or limiting resource, is constrained to be the same in the homogeneous and heterogeneous cases, the total population in the heterogeneous patches can never reach an asymptotic equilibrium that is greater than the sum of the carrying capacities over the homogeneous patches.
View Article and Find Full Text PDFRecent simulation modeling has shown that species can coevolve toward clusters of coexisting consumers exploiting the same limiting resource or resources, with nearly identical ratios of coefficients related to growth and mortality. This paper provides a mathematical basis for such as situation; a full analysis of the global dynamics of a new model for such a class of n-dimensional consumer-resource system, in which a set of consumers with identical growth to mortality ratios compete for the same resource and in which each consumer is mutualistic with the resource. First, we study the system of one resource and two consumers.
View Article and Find Full Text PDFIn this paper, a parasitism-mutualism-predation model is proposed to investigate the dynamics of multi-interactions among cuckoos, crows and cats with stage-structure and maturation time delays on cuckoos and crows. The crows permit the cuckoos to parasitize their nestlings (eggs) on the crow chicks (eggs). In return, the cuckoo nestlings produce a malodorous cloacal secretion to protect the crow chicks from predation by the cats, which is apparently beneficial to both the crow and cuckoo population.
View Article and Find Full Text PDFA large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast.
View Article and Find Full Text PDFUsually, the origin of a within-cohort bimodal size distribution is assumed to be caused by initial size differences or by one discrete period of accelerated growth for one part of the population. The aim of this study was to determine if more continuous pathways exist allowing shifts from the small to the large fraction within a bimodal age-cohort. Therefore, a Eurasian perch population, which had already developed a bimodal size-distribution and had differential resource use of the two size-cohorts, was examined.
View Article and Find Full Text PDFThe distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co-occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales.
View Article and Find Full Text PDFPopulation cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics.
View Article and Find Full Text PDFA recent result for a reaction-diffusion equation is that a population diffusing at any rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This has so far been proven by Lou for the case in which the reaction term has only one parameter, m(x), varying with spatial location x, which serves as both the intrinsic growth rate coefficient and carrying capacity of the population. However, this striking result seems rather limited when applies to real populations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2015
Background: Agent-based modelling (ABM) has been used to simulate mosquito life cycles and to evaluate vector control applications. However, most models lack sugar-feeding and resting behaviours or are based on mathematical equations lacking individual level randomness and spatial components of mosquito life. Here, a spatial individual-based model (IBM) incorporating sugar-feeding and resting behaviours of the malaria vector Anopheles gambiae was developed to estimate the impact of environmental sugar sources and resting sites on survival and biting behaviour.
View Article and Find Full Text PDFRift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements.
View Article and Find Full Text PDFIndividual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or "pragmatic" issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs.
View Article and Find Full Text PDF