Publications by authors named "Donald Kirkpatrick"

Article Synopsis
  • 5-fluorouracil (5-FU) is an important cancer treatment that mostly works by blocking a specific enzyme, leading to DNA damage, but clinical trials show it doesn't work well with certain other drugs for colorectal cancer.
  • Research indicates that 5-FU actually kills colorectal cancer cells by targeting RNA during the process of making ribosomes, rather than mainly causing DNA damage, which some cancer types are more sensitive to.
  • Strategies that increase ribosome production may enhance the effectiveness of 5-FU, suggesting that combining treatments that focus on this aspect could improve outcomes in cancer therapy.
View Article and Find Full Text PDF
Article Synopsis
  • Ribosomes are influenced by ubiquitination and deubiquitination processes, with the deubiquitinase OTUD6 playing a key role in protein translation in Drosophila by modifying the RPS7 subunit of the 40S ribosome.
  • Research shows that OTUD6 interacts specifically with the free 40S ribosomes and that several proteins, including RACK1 and E3 ligases like CNOT4 and RNF10, are involved in regulating this interaction and responding to cellular stress.
  • The levels of OTUD6 can change due to aging and stress, suggesting it helps control the initiation of protein translation by affecting the recycling of the 40S ribosomes.
View Article and Find Full Text PDF

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the roles of all four mammalian Argonaute (AGO) proteins in microRNA (miRNA) activity and finds that only AGO2 is essential for miRNA function, while AGO1, AGO3, and AGO4 can be disregarded for this purpose.
  • Instead of miRNA regulation, AGO1, AGO3, and AGO4 are shown to influence type 2 immunity through their role in splicing precursor mRNA in CD4 T helper lymphocytes.
  • The research highlights a direct interaction between nuclear AGO3 and SF3B3, which is part of the splicing machinery, affecting mRNA splicing and specifically the Nisch gene isoforms, implicating
View Article and Find Full Text PDF

Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples.

View Article and Find Full Text PDF

5-fluorouracil (5-FU) is a successful and broadly used anti-cancer therapeutic. A major mechanism of action of 5-FU is thought to be through thymidylate synthase (TYMS) inhibition resulting in dTTP depletion and activation of the DNA damage response. This suggests that 5-FU should synergize with other DNA damaging agents.

View Article and Find Full Text PDF

Targeted degradation of proteins by chimeric heterobifunctional degraders has emerged as a major drug discovery paradigm. Despite the increased interest in this approach, the criteria dictating target protein degradation by a degrader remain poorly understood, and potent target engagement by a degrader does not strongly correlate with target degradation. In this study, we present the biochemical characterization of an epidermal growth factor receptor (EGFR) degrader that potently binds both wild-type and mutant EGFR, but only degrades EGFR mutant variants.

View Article and Find Full Text PDF

Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor-related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose-response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist.

View Article and Find Full Text PDF

KRAS, which is mutated in ∼30% of all cancers, activates the RAF-MEK-ERK signaling cascade. CRAF is required for growth of KRAS mutant lung tumors, but the requirement for CRAF kinase activity is unknown. Here, we show that subsets of KRAS mutant tumors are dependent on CRAF for growth.

View Article and Find Full Text PDF
Article Synopsis
  • The p110a protein, a frequently mutated oncogene, is crucial for tumor growth, and new small-molecule inhibitors like GDC-0077 are showing promise in clinical trials for treating mutant breast cancer.
  • Early studies highlight that while these inhibitors can effectively attack tumor cells, they may inadvertently activate compensatory signaling pathways that reduce their effectiveness.
  • Recent findings reveal that GDC-0077 and taselisib uniquely degrade the mutant p110a protein, offering a more effective and targeted approach to inhibiting cancer pathways, especially in HER2-positive breast cancer patients.
View Article and Find Full Text PDF

The ubiquitin conjugating enzyme UBE2W catalyzes non-canonical ubiquitination on the N-termini of proteins, although its substrate repertoire remains unclear. To identify endogenous N-terminally-ubiquitinated substrates, we discover four monoclonal antibodies that selectively recognize tryptic peptides with an N-terminal diglycine remnant, corresponding to sites of N-terminal ubiquitination. Importantly, these antibodies do not recognize isopeptide-linked diglycine (ubiquitin) modifications on lysine.

View Article and Find Full Text PDF
Article Synopsis
  • * A study found that losing the autophagy gene ATG16L1 in myeloid cells improved the ability of macrophages to kill a specific harmful bacterium that is known to avoid destruction within cells.
  • * The research showed that ATG16L1 deficiency led to an increase in antioxidant proteins, helping macrophages handle oxidative stress and effectively clear pathogens, while excess antioxidants allowed the bacteria to thrive.
View Article and Find Full Text PDF
Article Synopsis
  • RIP1 kinase is linked to inflammation and cell death in nervous system disorders, prompting the development of a new rat model with a mutation that inactivates this kinase.
  • These RIP1 KD rats showed normal growth and reproduction but were resistant to certain types of cell death and TNF-induced shock.
  • Testing in a brain injury model revealed that the RIP1 KD rats had better outcomes, less inflammation, and fewer signs of neuronal damage, making them valuable for research on neurological diseases.
View Article and Find Full Text PDF

Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPβ) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPβ in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2).

View Article and Find Full Text PDF
Article Synopsis
  • * The mitochondrial deubiquitinase (DUB) USP30 is crucial for protein import; when it's inhibited or knocked out, proteins intended for the mitochondria accumulate and are not imported effectively.
  • * The E3 ligase March5 facilitates the ubiquitination of mitochondrial proteins, but its activity leads to the degradation of unimported proteins when USP30 is absent, ultimately affecting the abundance of TOM complex components in various tissues.
View Article and Find Full Text PDF

Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex.

View Article and Find Full Text PDF
Article Synopsis
  • Neddylation, a type of protein modification similar to ubiquitination, is not as well-understood, especially regarding its non-cullin substrates.
  • Researchers developed a method called serial NEDD8-ubiquitin substrate profiling (sNUSP) to identify neddylation sites in proteins, discovering 607 sites influenced by specific inhibitors and enzymes.
  • One significant finding was the neddylation of the actin regulator cofilin at lysine 112, which impacts neuronal development by affecting actin dynamics and neurite growth, highlighting its role in neuronal organization.
View Article and Find Full Text PDF

The ability to quantitatively measure a small molecule's interactions with its protein target(s) is crucial for both mechanistic studies of signaling pathways and in drug discovery. However, current methods to achieve this have specific requirements that can limit their application or interpretation. Here we describe a complementary target-engagement method, HIPStA (Heat Shock Protein Inhibition Protein Stability Assay), a high-throughput method to assess small molecule binding to endogenous, unmodified target protein(s) in cells.

View Article and Find Full Text PDF

Co-opting Cullin4 RING ubiquitin ligases (CRL4s) to inducibly degrade pathogenic proteins is emerging as a promising therapeutic strategy. Despite intense efforts to rationally design degrader molecules that co-opt CRL4s, much about the organization and regulation of these ligases remains elusive. Here, we establish protein interaction kinetics and estimation of stoichiometries (PIKES) analysis, a systematic proteomic profiling platform that integrates cellular engineering, affinity purification, chemical stabilization, and quantitative mass spectrometry to investigate the dynamics of interchangeable multiprotein complexes.

View Article and Find Full Text PDF

Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake.

View Article and Find Full Text PDF

Dysregulation of mitophagy, whereby damaged mitochondria are labeled for degradation by the mitochondrial kinase PINK1 and E3 ubiquitin ligase Parkin with phosphorylated ubiquitin chains (p-S65 ubiquitin), may contribute to neurodegeneration in Parkinson's disease. Here, we identify a phosphatase antagonistic to PINK1, protein phosphatase with EF-hand domain 2 (PPEF2), that can dephosphorylate ubiquitin and suppress PINK1-dependent mitophagy. Knockdown of PPEF2 amplifies the accumulation of p-S65 ubiquitin in cells and enhances baseline mitophagy in dissociated cortical cultures.

View Article and Find Full Text PDF

Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein.

View Article and Find Full Text PDF

In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 () show a trend for enrichment in cases compared with controls.

View Article and Find Full Text PDF