A new study reveals that, as mice learn a taste discrimination task, taste responses in gustatory cortex undergo plasticity such that they reflect taste identity and predict the upcoming decision in separate response epochs.
View Article and Find Full Text PDFThe gustatory cortex (GC) plays a pivotal role in taste perception, with neural ensemble responses reflecting taste quality and influencing behavior. Recent work, however, has shown that GC taste responses change across sessions of novel taste exposure in taste-naïve rats. Here, we use single-trial analyses to explore changes in the cortical taste-code on the scale of individual trials.
View Article and Find Full Text PDFUnlabelled: Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology.
View Article and Find Full Text PDFFood or taste preference tests are analogous to naturalistic decisions in which the animal selects which stimuli to sample and for how long to sample them. The data acquired in such tests, the relative amounts of the alternative stimuli that are sampled and consumed, indicate the preference for each. While such preferences are typically recorded as a single quantity, an analysis of the ongoing sampling dynamics producing the preference can reveal otherwise hidden aspects of the decision-making process that depend on its underlying neural circuit mechanisms.
View Article and Find Full Text PDFGustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dynamics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures.
View Article and Find Full Text PDFGustatory cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal's health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFPs) from healthy rats and rats made ill (via LiCl injection).
View Article and Find Full Text PDFModern techniques that enable identification and targeted manipulation of neuron groups are frequently used to bolster theories that attribute specific behavioral functions to specific neuron types. These same techniques can also be used, however, to highlight limitations of such attribution, and to develop the argument that the question "what is the function of these neurons?" is ill-posed in the absence of temporal and network constraints. Here we do this, first reviewing evidence that neural responses are dynamic at multiple time scales, making the point that such changes in firing rates imply changes in what the neuron is doing.
View Article and Find Full Text PDFExperience impacts learning and perception. Familiarity with stimuli that later become the conditioned stimulus (CS) in a learning paradigm, for instance, reduces the strength of that learning-a fact well documented in studies of conditioned taste aversion (CTA; De la Casa & Lubow, 1995; Lubow, 1973; Lubow & Moore, 1959). Recently, we have demonstrated that even experience with "incidental" (i.
View Article and Find Full Text PDFDecisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal's natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity.
View Article and Find Full Text PDFTaste palatability is centrally involved in consumption decisions-we ingest foods that taste good and reject those that don't. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. To probe this issue, we discretely perturbed (with optogenetics) activity in rats' BLA→GC axons during taste deliveries.
View Article and Find Full Text PDFCorrelation-based (Hebbian) forms of synaptic plasticity are crucial for the initial encoding of associative memories but likely insufficient to enable the stable storage of multiple specific memories within neural circuits. Theoretical studies have suggested that homeostatic synaptic normalization rules provide an essential countervailing force that can stabilize and expand memory storage capacity. Although such homeostatic mechanisms have been identified and studied for decades, experimental evidence that they play an important role in associative memory is lacking.
View Article and Find Full Text PDFBackground: Working memory deficits are key cognitive symptoms of schizophrenia. Elevated delta oscillations, which are uniquely associated with the presence of the illness, may be the proximal cause of these deficits. Spatial working memory (SWM) is impaired by elevated delta oscillations projecting from thalamic nucleus reuniens (RE) to the hippocampus (HPC); these findings imply a role of the RE-HPC circuit in working memory deficits in schizophrenia, but questions remain as to whether the affected process is the encoding of working memory, recall, or both.
View Article and Find Full Text PDFIn the classical view of economic choices, subjects make rational decisions evaluating the costs and benefits of options in order to maximize their overall income. Nonetheless, subjects often fail to reach optimal outcomes. The overt value of an option drives the direction of decisions, but covert factors such as emotion and sensitivity to sunk cost are thought to drive the observed deviations from optimality.
View Article and Find Full Text PDFConditioned taste aversion (CTA) is a form of one-trial learning dependent on basolateral amygdala projection neurons (BLApn). Its underlying cellular and molecular mechanisms remain poorly understood. RNAseq from BLApn identified changes in multiple candidate learning-related transcripts including the expected immediate early gene and , a master kinase of the AMP-related kinase pathway with important roles in growth, metabolism and development, but not previously implicated in learning.
View Article and Find Full Text PDFAnimals need to remember the locations of nourishing and toxic food sources for survival, a fact that necessitates a mechanism for associating taste experiences with particular places. We have previously identified such responses within hippocampal place cells [1], the activity of which is thought to aid memory-guided behavior by forming a mental map of an animal's environment that can be reshaped through experience [2-7]. It remains unknown, however, whether taste responsiveness is intrinsic to a subset of place cells or emerges as a result of experience that reorganizes spatial maps.
View Article and Find Full Text PDFElectrophysiological analysis has revealed much about the broad coding and neural ensemble dynamics that characterize gustatory cortical (GC) taste processing in awake rats and about how these dynamics relate to behavior. With regard to mice, however, data concerning cortical taste coding have largely been restricted to imaging, a technique that reveals average levels of neural responsiveness but that (currently) lacks the temporal sensitivity necessary for evaluation of fast response dynamics; furthermore, the few extant studies have thus far failed to provide consensus on basic features of coding. We have recorded the spiking activity of ensembles of GC neurons while presenting representatives of the basic taste modalities (sweet, salty, sour, and bitter) to awake mice.
View Article and Find Full Text PDFSensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.
View Article and Find Full Text PDFThe gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities.
View Article and Find Full Text PDFAn animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food.
View Article and Find Full Text PDFSmells can arise from a source external to the body and stimulate the olfactory epithelium upon inhalation through the nares (orthonasal olfaction). Alternatively, smells may arise from inside the mouth during consumption, stimulating the epithelium upon exhalation (retronasal olfaction). Both ortho- and retronasal olfaction produce highly salient percepts, but the two percepts have very different behavioral implications.
View Article and Find Full Text PDFThe strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with "incidental" stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival.
View Article and Find Full Text PDFUnlabelled: In neuroscientists' attempts to understand the long-term storage of memory, topics of particular importance and interest are the cellular and system mechanisms of maintenance (e.g., those sensitive to ζ-inhibitory peptide, ZIP) and those induced by memory retrieval (i.
View Article and Find Full Text PDFUnlabelled: Rats produce robust, highly distinctive orofacial rhythms in response to taste stimuli-responses that aid in the consumption of palatable tastes and the ejection of aversive tastes, and that are sourced in a multifunctional brainstem central pattern generator. Several pieces of indirect evidence suggest that primary gustatory cortex (GC) may be a part of a distributed forebrain circuit involved in the selection of particular consumption-related rhythms, although not in the production of individual mouth movements per se. Here, we performed a series of tests of this hypothesis.
View Article and Find Full Text PDFConditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty-the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation.
View Article and Find Full Text PDF