Publications by authors named "Donald K Clifton"

Vasomotor symptoms (VMS; or hot flashes) plague millions of reproductive-aged men and women who have natural or iatrogenic loss of sex steroid production. Many affected individuals are left without treatment options because of contraindications to hormone replacement therapy and the lack of equally effective nonhormonal alternatives. Moreover, development of safer, more effective therapies has been stymied by the lack of an animal model that recapitulates the hot-flash phenomenon and enables direct testing of hypotheses regarding the pathophysiology underlying hot flashes.

View Article and Find Full Text PDF

Objective: The etiology of postmenopausal hot flashes is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing kisspeptin, neurokinin B and dynorphin-called KNDy neurons-are located adjacent to the thermoregulatory center. KNDy neurons regulate pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH).

View Article and Find Full Text PDF
Article Synopsis
  • - Kisspeptin is crucial for puberty and reproduction, and animals lacking it often face infertility, but recent studies challenge this idea, showing that losing most Kiss1 neurons doesn’t stop reproduction.
  • - The hypothesis is that minimal amounts of kisspeptin could still allow for reproduction, even in animals with drastically reduced Kiss1 expression, suggesting redundancy in its role.
  • - Testing in a specific mouse model revealed that while male mice with severely reduced Kiss1 expression can still reproduce effectively, female mice require higher levels to maintain fertility and normal ovulation.
View Article and Find Full Text PDF

At puberty, neurokinin B (NKB) and kisspeptin (Kiss1) may help to amplify GnRH secretion, but their precise roles remain ambiguous. We tested the hypothesis that NKB and Kiss1 are induced as a function of pubertal development, independently of the prevailing sex steroid milieu. We found that levels of Kiss1 mRNA in the arcuate nucleus (ARC) are increased prior to the age of puberty in GnRH/sex steroid-deficient hpg mice, yet levels of Kiss1 mRNA in wild-type mice remained constant, suggesting that sex steroids exert a negative feedback effect on Kiss1 expression early in development and across puberty.

View Article and Find Full Text PDF

Human genetic studies have revealed that neurokinin B (NKB) and its receptor, neurokinin-3 receptor (NK3R), are essential elements for normal reproduction; however, the precise role of NKB-NK3R signaling in the initiation of puberty remains unknown. We investigated here the regulation of Tac2 and Tacr3 mRNAs (encoding NKB and NK3R, respectively) in female rats and demonstrated that their hypothalamic expression is increased along postnatal maturation. At puberty, both genes were widely expressed throughout the brain, including the lateral hypothalamic area and the arcuate nucleus (ARC)/medial basal hypothalamus, where the expression of Tacr3 increased across pubertal transition.

View Article and Find Full Text PDF

Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein.

View Article and Find Full Text PDF

Kisspeptin (encoded by the Kiss1 gene) is an important regulator of reproduction. In rodents, Kiss1 is expressed in two hypothalamic regions, the arcuate nucleus and anteroventral periventricular/ periventricular continuum, where it is regulated by sex steroids. However, the distribution, regulation, and functional significance of neural kisspeptin outside of the hypothalamus have not been studied and are poorly understood.

View Article and Find Full Text PDF

Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses.

View Article and Find Full Text PDF

In female mammals, increased ovarian estradiol (E(2)) secretion triggers GnRH release from neurons in the basal forebrain, which drives LH secretion from the pituitary and subsequently induces ovulation. However, the neural circuits that activate this preovulatory GnRH/LH surge remain unidentified. Neurotensin is expressed in neurons of the anteroventral periventricular nucleus (AVPV), a region thought to be critical for generating the preovulatory GnRH/LH surge.

View Article and Find Full Text PDF

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance.

View Article and Find Full Text PDF

Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species.

View Article and Find Full Text PDF

In mammals, puberty onset typically occurs earlier in females than in males, but the explanation for sexual differentiation in the tempo of pubertal development is unknown. Puberty in both sexes is a brain-dependent phenomenon and involves alterations in the sensitivity of neuronal circuits to gonadal steroid feedback as well as gonadal hormone-independent changes in neuronal circuitry. Kisspeptin, encoded by the Kiss1 gene, plays an essential but ill-defined role in pubertal maturation.

View Article and Find Full Text PDF

Kisspeptin is a product of the Kiss1 gene and is expressed in the forebrain. Neurons that express Kiss1 play a crucial role in the regulation of pituitary luteinizing hormone secretion and reproduction. These neurons are the direct targets for the action of estradiol-17beta (E(2)), which acts via the estrogen receptor alpha isoform (ER alpha) to regulate Kiss1 expression.

View Article and Find Full Text PDF

The preovulatory GnRH/LH surge depends on the presence of estradiol (E(2)) and is gated by a circadian oscillator in the suprachiasmatic nucleus (SCN) that causes the surge to occur within a specific temporal window. Although the mechanisms by which the clock times the LH surge are unclear, evidence suggests that the SCN is linked to GnRH neurons through a multisynaptic pathway that includes neurons in the anteroventral periventricular nucleus (AVPV). Recently, Kiss1 neurons in the AVPV have been implicated in the surge mechanism, suggesting that they may integrate circadian and E(2) signals to generate the LH surge.

View Article and Find Full Text PDF

Galanin-like peptide (GALP) is expressed in the arcuate nucleus and is implicated in the neuroendocrine regulation of metabolism and reproduction. To investigate the physiological significance of GALP, we generated and characterized a strain of mice with a genetically targeted deletion in the GALP gene [GALP knockout (KO) mice]. We report that GALP KO mice have a subtle, but notable, metabolic phenotype that becomes apparent during adaptation to changes in nutrition.

View Article and Find Full Text PDF

The cancer suppressor gene, KISS1, was initially described as having an important role in inhibiting cancer metastasis. Since then, KISS1 and its receptor, KISS1R, have been shown to play a key role in controlling the onset of puberty of reproductive physiology in the human and other species. Recent studies have also linked KISS1/kisspeptin/KISS1R to other processes, such as vasoconstriction, aging, adipocyte physiology, and perhaps as a molecular conduit linking metabolism and reproduction.

View Article and Find Full Text PDF

Neurons that produce gonadotropin-releasing hormone (GnRH) reside in the basal forebrain and drive reproductive function in mammals. Understanding the circuitry that regulates GnRH neurons is fundamental to comprehending the neuroendocrine control of puberty and reproduction in the adult. This review focuses on a family of neuropeptides encoded by the Kiss1 gene, the kisspeptins, and their cognate receptor, GPR54, which have been implicated in the regulation of GnRH secretion.

View Article and Find Full Text PDF

The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin-GPR54 signaling in the regulation of gonadotropin secretion is unknown.

View Article and Find Full Text PDF

Neurons that produce gonadotropin-releasing hormone (GnRH) drive the reproductive axis, but the molecular and cellular mechanisms by which hormonal and environmental signals regulate GnRH secretion remain poorly understood. Kisspeptins are products of the Kiss1 gene, and the interaction of kisspeptin and its receptor GPR54 plays a crucial role in governing the onset of puberty and adult reproductive function. This review discusses the latest ideas about kisspeptin-GPR54 signaling in the neuroendocrine regulation of reproduction, with special emphasis on the role of Kiss1 and kisspeptin in the negative and positive feedback control of gonadotropin secretion by sex steroids, timing of puberty onset, sexual differentiation of the brain and photoperiodic regulation of seasonal reproduction.

View Article and Find Full Text PDF

Fertility is gated by nutrition and the availability of stored energy reserves, but the cellular and molecular mechanisms that link energy stores and reproduction are not well understood. Neuropeptides including galanin-like peptide (GALP), neuropeptide Y (NPY), products of the proopiomelanocortin (POMC; e.g.

View Article and Find Full Text PDF

GPR54 is a G-protein-coupled receptor, which binds kisspeptins and is widely expressed throughout the brain. Kisspeptin-GPR54 signaling has been implicated in the regulation of pubertal and adulthood gonadotropin-releasing hormone (GnRH) secretion, and mutations or deletions of GPR54 cause hypogonadotropic hypogonadism in humans and mice. Other reproductive roles for kisspeptin-GPR54 signaling, including the regulation of developmental GnRH secretion or sexual behavior in adults, have not yet been explored.

View Article and Find Full Text PDF

Kisspeptins are neuropeptides encoded by the Kiss1 gene, which have been implicated in the neuroendocrine regulation of gonadotropin-releasing hormone (GnRH) secretion. The goal of this study was to test the hypothesis that activation of Kiss1 neurons in the anteroventral periventricular nucleus (AVPV) is linked to the induction of the preovulatory luteinizing hormone (LH) surge in the rat. First, we determined that levels of Kiss1 mRNA in the AVPV peaked during the evening of proestrus, whereas Kiss1 mRNA in the arcuate nucleus (Arc) was at its nadir.

View Article and Find Full Text PDF

The Kiss1 gene codes for a family of peptides that act as endogenous ligands for the G protein-coupled receptor GPR54. Spontaneous mutations or targeted deletions of GPR54 in man and mice produce hypogonadotropic hypogonadism and infertility. Centrally administered kisspeptins stimulate gonadotropin secretion by acting directly on GnRH neurons.

View Article and Find Full Text PDF

The Kiss1 gene encodes a family of peptides called kisspeptins, which bind to the G protein-coupled receptor GPR54. Kisspeptin(s) and its receptor are expressed in the forebrain, and the discovery that mice and humans lacking a functional GPR54 fail to undergo puberty and exhibit hypogonadotropic hypogonadism implies that kisspeptin signaling plays an essential role in reproduction. Studies in several mammalian species have shown that kisspeptins stimulate the secretion of gonadotropins from the pituitary by stimulating the release of GnRH from the forebrain after the activation of GPR54, which is expressed by GnRH neurons.

View Article and Find Full Text PDF