Publications by authors named "Donald J Zack"

Inherited retinal degeneration (IRD) disease and age-related macular degeneration (AMD) are leading causes of irreversible vision loss and blindness. Although significant progress has advanced the field in the past 5 years, significant challenges remain. The current article reviews the accomplishments and research advances that have fueled the development of treatments for patients with IRD and AMD, including the first approved gene-augmentation treatment for RPE65-related retinal degeneration and complement inhibition therapies to slow progression of geographic atrophy (GA) in AMD.

View Article and Find Full Text PDF

RNA isolation is an essential first step for many types of molecular analyses, including reverse transcription PCR (RT-PCR)/quantitative RT-PCR (qRT-PCR), Northern blotting, microarrays, and RNA-sequencing. While many RNA purification methods have been reported, it can be challenging to extract sufficient quantity, and suitable quality, of RNA from very small amounts of tissue and/or samples containing low numbers of cells. Here we outline a total RNA isolation method that reproducibly yields high-quality RNA from human stem cell-derived retinal organoids for downstream transcriptomic analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - This study shifts the focus from internal mechanisms of neuronal survival to the role of intercellular communication in helping retinal ganglion cells (RGCs) survive after optic nerve injury, using single-cell RNA sequencing to analyze interactions.
  • - Researchers found that high-survival RGCs have more interactions with neighboring cells, identifying 47 stronger ligand-receptor interactions that likely provide neuroprotective benefits.
  • - One key finding was that the μ-opioid receptor (Oprm1) enhances neuroprotection and can be beneficial across different types of RGCs; altering its activity even improved visual function in mouse models.
View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs.

View Article and Find Full Text PDF

Brain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations.

View Article and Find Full Text PDF

Purpose: The Retinal Ganglion Cell (RGC) Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) consortium was founded in 2021 to help address the numerous scientific and clinical obstacles that impede development of vision-restorative treatments for patients with optic neuropathies. The goals of the RReSTORe consortium are: (1) to define and prioritize the most critical challenges and questions related to RGC regeneration; (2) to brainstorm innovative tools and experimental approaches to meet these challenges; and (3) to foster opportunities for collaborative scientific research among diverse investigators.

Design And Participants: The RReSTORe consortium currently includes > 220 members spanning all career stages worldwide and is directed by an organizing committee comprised of 15 leading scientists and physician-scientists of diverse backgrounds.

View Article and Find Full Text PDF

Background: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology.

View Article and Find Full Text PDF

Viscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections.

View Article and Find Full Text PDF

Intercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies.

View Article and Find Full Text PDF

A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma.

View Article and Find Full Text PDF

Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain.

View Article and Find Full Text PDF
Article Synopsis
  • RGC death in glaucoma leads to permanent vision loss due to the limited ability of the central nervous system to regenerate, prompting interest in repopulating these cells to restore vision.
  • The RReSTORe Consortium was formed to tackle the complexities of repairing the visual pathway and focuses on five key areas: RGC development, transplantation methods, cell survival, retinal connections, and eye-to-brain communication.
  • Their collaborative approach aims to combine various scientific fields to overcome existing challenges and develop effective therapies for restoring vision impaired by optic neuropathies.
View Article and Find Full Text PDF

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied.

View Article and Find Full Text PDF

Purpose: Axons depend on long-range transport of proteins and organelles which increases susceptibility to metabolic stress in disease. The axon initial segment (AIS) is particularly vulnerable due to the high bioenergetic demand of action potential generation. Here, we prepared retinal ganglion cells derived from human embryonic stem cells (hRGCs) to probe how axonal stress alters AIS morphology.

View Article and Find Full Text PDF

Neuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer.

View Article and Find Full Text PDF
Article Synopsis
  • * Research involved bulk RNA-sequencing to analyze gene expression in the unmyelinated and myelinated regions of the optic nerve in mice, revealing distinct patterns and pathways affected by optic nerve injury and glaucoma.
  • * Findings indicated that the unmyelinated optic nerve had unique gene expression profiles, particularly related to astrocytes, and that gene expression changes were more extensive following nerve crush compared to glaucoma, highlighting the importance of the unmyelinated region in IOP responses.
View Article and Find Full Text PDF
Article Synopsis
  • The human brain is an incredibly efficient computing system, operating on just 20 watts of power, and is unmatched in processing information and learning.
  • Recent advancements in stem cell technology have led to the creation of three-dimensional brain organoids that better mimic human brain functions, paving the way for Organoid Intelligence (OI).
  • The first Organoid Intelligence Workshop at Johns Hopkins University aimed to foster a community focused on establishing OI as a new discipline, exploring its potential to revolutionize fields like computing, neuroscience, and drug development.
View Article and Find Full Text PDF

Promoting myelination capacity of endogenous oligodendrocyte precursor cells (OPCs) is a promising therapeutic approach for CNS demyelinating disorders such as Multiple Sclerosis (MS). To aid in the discovery of myelination-promoting compounds, we generated a genome-engineered human pluripotent stem cell (hPSC) line that consists of three reporters: identification-and-purification tag, GFP, and secreted-NanoLuc, driven by the endogenous and genes, respectively. Using this cell line, we established a high-throughput drug screening platform and performed a small-molecule screen, which identified at least two myelination-promoting small-molecule (Ro1138452 and SR2211) that target prostacyclin (IP) receptor and retinoic acid receptor-related orphan receptor γ (RORγ), respectively.

View Article and Find Full Text PDF

The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis.

View Article and Find Full Text PDF

Alternative splicing is a fundamental and highly regulated post-transcriptional process that enhances transcriptome and proteome diversity. This process is particularly important in neuronal tissues, such as the retina, which exhibit some of the highest levels of differentially spliced genes in the body. Alternative splicing is regulated both temporally and spatially during neuronal development, can be cell-type-specific, and when altered can cause a number of pathologies, including retinal degeneration.

View Article and Find Full Text PDF

Traumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how natural and induced somatic mutations in the genome can serve as "lineage barcodes" to track cellular relationships and their development over time.
  • The authors introduce a method called quantitative fate mapping, which reconstructs the hierarchy and dynamics of progenitor cell states during development using these lineage barcodes.
  • They present a tool named Phylotime for creating time-scaled phylogenies and validate its effectiveness through experiments, establishing guidelines for analyzing the necessary number of cells for accurate fate mapping.
View Article and Find Full Text PDF

Cell replacement therapies may be key in achieving functional recovery in neurodegenerative optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion cells (hRGCs). Previous hRGC transplantation studies have shown modest success.

View Article and Find Full Text PDF

Background: Though case fatality rate (CFR) is widely used to reflect COVID-19 fatality risk, its use is limited by large temporal and spatial variation. Hospital mortality rate (HMR) is also used to assess the severity of COVID-19, but HMR data is not directly available globally. Alternative metrics are needed for COVID-19 severity and fatality assessment.

View Article and Find Full Text PDF