Inherited retinal degeneration (IRD) disease and age-related macular degeneration (AMD) are leading causes of irreversible vision loss and blindness. Although significant progress has advanced the field in the past 5 years, significant challenges remain. The current article reviews the accomplishments and research advances that have fueled the development of treatments for patients with IRD and AMD, including the first approved gene-augmentation treatment for RPE65-related retinal degeneration and complement inhibition therapies to slow progression of geographic atrophy (GA) in AMD.
View Article and Find Full Text PDFRNA isolation is an essential first step for many types of molecular analyses, including reverse transcription PCR (RT-PCR)/quantitative RT-PCR (qRT-PCR), Northern blotting, microarrays, and RNA-sequencing. While many RNA purification methods have been reported, it can be challenging to extract sufficient quantity, and suitable quality, of RNA from very small amounts of tissue and/or samples containing low numbers of cells. Here we outline a total RNA isolation method that reproducibly yields high-quality RNA from human stem cell-derived retinal organoids for downstream transcriptomic analysis.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs.
View Article and Find Full Text PDFBrain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations.
View Article and Find Full Text PDFPurpose: The Retinal Ganglion Cell (RGC) Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) consortium was founded in 2021 to help address the numerous scientific and clinical obstacles that impede development of vision-restorative treatments for patients with optic neuropathies. The goals of the RReSTORe consortium are: (1) to define and prioritize the most critical challenges and questions related to RGC regeneration; (2) to brainstorm innovative tools and experimental approaches to meet these challenges; and (3) to foster opportunities for collaborative scientific research among diverse investigators.
Design And Participants: The RReSTORe consortium currently includes > 220 members spanning all career stages worldwide and is directed by an organizing committee comprised of 15 leading scientists and physician-scientists of diverse backgrounds.
Background: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology.
View Article and Find Full Text PDFViscoelastic focusing has emerged as a promising method for label-free and passive manipulation of micro and nanoscale bioparticles. However, the design of microfluidic devices for viscoelastic particle focusing requires a thorough comprehensive understanding of the flow condition and operational parameters that lead to the desired behavior of microparticles. While recent advancements have been made, viscoelastic focusing is not fully understood, particularly in straight microchannels with rectangular cross sections.
View Article and Find Full Text PDFIntercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies.
View Article and Find Full Text PDFA major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma.
View Article and Find Full Text PDFBrain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain.
View Article and Find Full Text PDFEffective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied.
View Article and Find Full Text PDFPurpose: Axons depend on long-range transport of proteins and organelles which increases susceptibility to metabolic stress in disease. The axon initial segment (AIS) is particularly vulnerable due to the high bioenergetic demand of action potential generation. Here, we prepared retinal ganglion cells derived from human embryonic stem cells (hRGCs) to probe how axonal stress alters AIS morphology.
View Article and Find Full Text PDFNeuronal repopulation achieved through transplantation or transdifferentiation from endogenous sources holds tremendous potential for restoring function in chronic neurodegenerative disease or acute injury. Key to the evaluation of neuronal engraftment is the definitive discrimination of new or donor neurons from preexisting cells within the host tissue. Recent work has identified mechanisms by which genetically encoded donor cell reporters can be transferred to host neurons through intercellular material transfer.
View Article and Find Full Text PDFPromoting myelination capacity of endogenous oligodendrocyte precursor cells (OPCs) is a promising therapeutic approach for CNS demyelinating disorders such as Multiple Sclerosis (MS). To aid in the discovery of myelination-promoting compounds, we generated a genome-engineered human pluripotent stem cell (hPSC) line that consists of three reporters: identification-and-purification tag, GFP, and secreted-NanoLuc, driven by the endogenous and genes, respectively. Using this cell line, we established a high-throughput drug screening platform and performed a small-molecule screen, which identified at least two myelination-promoting small-molecule (Ro1138452 and SR2211) that target prostacyclin (IP) receptor and retinoic acid receptor-related orphan receptor γ (RORγ), respectively.
View Article and Find Full Text PDFThe immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
October 2023
Alternative splicing is a fundamental and highly regulated post-transcriptional process that enhances transcriptome and proteome diversity. This process is particularly important in neuronal tissues, such as the retina, which exhibit some of the highest levels of differentially spliced genes in the body. Alternative splicing is regulated both temporally and spatially during neuronal development, can be cell-type-specific, and when altered can cause a number of pathologies, including retinal degeneration.
View Article and Find Full Text PDFTraumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI).
View Article and Find Full Text PDFCell replacement therapies may be key in achieving functional recovery in neurodegenerative optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion cells (hRGCs). Previous hRGC transplantation studies have shown modest success.
View Article and Find Full Text PDFBackground: Though case fatality rate (CFR) is widely used to reflect COVID-19 fatality risk, its use is limited by large temporal and spatial variation. Hospital mortality rate (HMR) is also used to assess the severity of COVID-19, but HMR data is not directly available globally. Alternative metrics are needed for COVID-19 severity and fatality assessment.
View Article and Find Full Text PDF