Publications by authors named "Donald J Patterson"

As AI systems proliferate, their greenhouse gas emissions are an increasingly important concern for human societies. In this article, we present a comparative analysis of the carbon emissions associated with AI systems (ChatGPT, BLOOM, DALL-E2, Midjourney) and human individuals performing equivalent writing and illustrating tasks. Our findings reveal that AI systems emit between 130 and 1500 times less CO2e per page of text generated compared to human writers, while AI illustration systems emit between 310 and 2900 times less CO2e per image than their human counterparts.

View Article and Find Full Text PDF

In this article we discuss an assisted cognition information technology system that can learn personal maps customized for each user and infer his daily activities and movements from raw GPS data. The system uses discriminative and generative models for different parts of this task. A discriminative relational Markov network is used to extract significant places and label them; a generative dynamic Bayesian network is used to learn transportation routines, and infer goals and potential user errors at real time.

View Article and Find Full Text PDF

Elevated serum phosphate levels have been linked with vascular calcification and mortality among dialysis patients. The relationship between phosphate and mortality has not been explored among patients with chronic kidney disease (CKD). A retrospective cohort study was conducted from eight Veterans Affairs' Medical Centers located in the Pacific Northwest.

View Article and Find Full Text PDF

Accurate splice site prediction is a critical component of any computational approach to gene prediction in higher organisms. Existing approaches generally use sequence-based models that capture local dependencies among nucleotides in a small window around the splice site. We present evidence that computationally predicted secondary structure of moderate length pre-mRNA subsequencies contains information that can be exploited to improve acceptor splice site prediction beyond that possible with conventional sequence-based approaches.

View Article and Find Full Text PDF