Publications by authors named "Donald J O'Hara"

Objective: Active drug safety surveillance may be enhanced by analysis of multiple observational healthcare databases, including administrative claims and electronic health records. The objective of this study was to develop and evaluate a common data model (CDM) enabling rapid, comparable, systematic analyses across disparate observational data sources to identify and evaluate the effects of medicines.

Design: The CDM uses a person-centric design, with attributes for demographics, drug exposures, and condition occurrence.

View Article and Find Full Text PDF

Background: Pharmacovigilance data-mining algorithms (DMAs) are known to generate significant numbers of false-positive signals of disproportionate reporting (SDRs), using various standards to define the terms 'true positive' and 'false positive'.

Objective: To construct a highly inclusive reference event database of reported adverse events for a limited set of drugs, and to utilize that database to evaluate three DMAs for their overall yield of scientifically supported adverse drug effects, with an emphasis on ascertaining false-positive rates as defined by matching to the database, and to assess the overlap among SDRs detected by various DMAs.

Methods: A sample of 35 drugs approved by the US FDA between 2000 and 2004 was selected, including three drugs added to cover therapeutic categories not included in the original sample.

View Article and Find Full Text PDF

The optimum timing of drug safety data mining for a new drug is uncertain. The objective of this study was to compare cumulative data mining versus mining with sliding time windows. Adverse Event Reporting System data (2001-2005) were studied for 27 drugs.

View Article and Find Full Text PDF

Background: A number of published studies compare adverse event rates for drugs on the basis of reports in the US FDA Adverse Event Reporting System (AERS). While the AERS data have the advantage of timely availability and a large capture population, the database is subject to many significant biases, and lacks complete patient information that would allow for correction of those biases. The accuracy of comparative AERS-based data mining has been questioned, but has not been systematically studied.

View Article and Find Full Text PDF

Purpose: To compare the results of drug safety data mining with three different algorithms, when adverse events are identified using MedDRA Preferred Terms (PT) vs. High Level Terms (HLT) vs. Standardised MedDRA Queries (SMQ).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionog28t77nl8n994c6b5vs5fv5qv3qaf0g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once