Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat. We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants.
View Article and Find Full Text PDFBackground: The transformation of plant photosynthate into soil organic carbon and its recycling to CO by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon.
Results: We conducted an experiment in which common wild oats (Avena fatua) were grown in a CO atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses.
Unlabelled: It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct.
View Article and Find Full Text PDFCoarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States.
View Article and Find Full Text PDFPremise Of The Study: Nitrogen (N) inputs to the terrestrial environment have doubled worldwide during the past century. N negatively impacts plant diversity, but it is unknown why some species are more susceptible than others. While it is often assumed that competition drives species decline, N enrichment also strongly affects soil microbial communities.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) perform an important ecosystem service by improving plant nutrient capture from soil, yet little is known about how AMF influence soil microbial communities during nutrient uptake. We tested whether an AMF modifies the soil microbial community and nitrogen cycling during litter decomposition. A two-chamber microcosm system was employed to create a root-free soil environment to control AMF access to (13) C- and (15) N-labelled root litter.
View Article and Find Full Text PDFNitrification and denitrification processes are crucial to plant nutrient availability, eutrophication and greenhouse gas production both locally and globally. Unravelling the major environmental predictors for nitrification and denitrification is thus pivotal in order to understand and model environmental nitrogen (N) cycling. Here, we sampled five plant community types characteristic of interior Alaska, including black spruce, bog birch, tussock grass and two fens.
View Article and Find Full Text PDFWe investigated arbuscular mycorrhizal fungi (AMF) alteration of microbial mediation of litter decomposition. AMF (Glomus hoi) were either allowed access to or excluded from Plantago lanceolata L. root litter embedded in soil; litter was labeled with either (13) C only or (13) C and (15) N.
View Article and Find Full Text PDFTo evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations.
View Article and Find Full Text PDFReduction of soluble uranium U(VI) to less-soluble uranium U(IV) is a promising approach to minimize migration from contaminated aquifers. It is generally assumed that, under constant reducing conditions, U(IV) is stable and immobile; however, in a previous study, we documented reoxidation of U(IV) under continuous reducing conditions (Wan et al., Environ.
View Article and Find Full Text PDFPlant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling.
View Article and Find Full Text PDFChromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils.
View Article and Find Full Text PDF