Publications by authors named "Donald H Les"

Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility.

View Article and Find Full Text PDF

Premise: The submersed aquatic plant Hydrilla verticillata ("hydrilla") is important ecologically and economically due to its aggressive growth in both indigenous and nonindigenous regions. Substantial morphological variation has been documented in hydrilla, including the existence of monoecious and dioecious "biotypes." Whereas plastid sequence data have been used previously to explore intraspecific diversity, nuclear data have yet to be analyzed in a phylogenetic context.

View Article and Find Full Text PDF

Past phylogenetic studies of the monocot order Alismatales left several higher-order relationships unresolved. We addressed these uncertainties using a nearly complete genus-level sampling of whole plastid genomes (gene sets representing 83 protein-coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support.

View Article and Find Full Text PDF

Cryptic sympatric species arise when reproductive isolation is established in sympatry, leading to genetically divergent lineages that are highly similar morphologically or virtually indistinguishable. Although cryptic sympatric species have been reported in various animals, fungi, and protists, there are few compelling examples for plants. This investigation presents a case for cryptic sympatric speciation in Najas flexilis, a widespread aquatic plant, which extends throughout northern North America and Eurasia.

View Article and Find Full Text PDF

Haloragaceae are a cosmopolitan plant family with its centre of diversity in Australia. Here, we investigate the historical biogeography of the family and the role of vicariance or dispersal in shaping its current distribution. DNA sequences from ITS, matK and the trnK 5' and trnK 3' introns were obtained for 102 species representing all 8 genera of Haloragaceae for use in Bayesian molecular dating.

View Article and Find Full Text PDF

Premise Of The Study: The discontinuous North American distribution of Najas gracillima has not been explained satisfactorily. Influences of extirpation, nonindigenous introduction, and postglacial migration on its distribution were evaluated using field, fossil, morphological, and molecular data. Najas is a major waterfowl food, and appropriate conservation measures rely on accurate characterization of populations as indigenous or imperiled.

View Article and Find Full Text PDF

The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater.

View Article and Find Full Text PDF

Although chloroplast transcriptional and translational mechanisms were derived originally from prokaryote endosymbionts, chloroplasts retain comparatively few genes as a consequence of the overall transfer to the nucleus of functions associated formerly with prokaryotic genomes. Various modifications reflect other evolutionary shifts toward eukaryotic regulation such as posttranscriptional transcript cleavage with individually processed cistrons in operons and gene expression regulated by nuclear-encoded sigma factors. We report a notable exception for the psaA-psaB-rps14 operon of land plant (embryophyte) chloroplasts, where the first two cistrons are separated by a spacer region to which no significant role had been attributed.

View Article and Find Full Text PDF

Sequences of the nuclear internal transcribed spacer (ITS) regions ITS1 and ITS2 have been used widely in molecular phylogenetic studies because of their relatively high variability and facility of amplification. For phylogenetic applications, most researchers use sequence alignments that are based on nucleotide similarity. However, confidence in the alignment often deteriorates at taxonomic levels above genus, due to increasing variability among sequences.

View Article and Find Full Text PDF

The poorly known Haloragaceae R. Br. (Saxifragales) are highly diverse in habit (small trees to submerged aquatics) and labile in floral merosity (2-4), both uncommon among the core eudicots.

View Article and Find Full Text PDF

Field surveys in eastern North America confirm the naturalization of Glossostigma plants at 19 localities in four states: Connecticut, New Jersey, Pennsylvania, and Rhode Island. DNA sequence analysis of individuals from 14 sampled populations identifies these nonindigenous plants as Glossostigma cleistanthum, a species native to Australia and New Zealand. These results correct prior misidentifications of North American plants as G.

View Article and Find Full Text PDF

Invasions of nonindigenous species have caused ecological devastation to natural communities worldwide, yet the biological bases for invasiveness remain poorly understood. Our studies of invasive watermilfoil (Myriophyllum) populations revealed widespread polymorphisms in biparentally inherited nuclear ribosomal DNA sequences, which were not detected in populations of native North American species. Subclones of the polymorphic regions revealed the occurrence of distinct sequences matching those acquired from both nonindigenous and native North American species.

View Article and Find Full Text PDF

Aster furcatus is a rare, self-incompatible plant with fewer than 50 known populations throughout its range. We verified self-incompatibility in A. furcatus by conducting experimental self- and cross-pollinations and by examining seed set in a small population comprised of a single clonal genet.

View Article and Find Full Text PDF

Morphologically heterophyllous species of Potamogeton also commonly display biochemical heterophylly with respect to flavonoid compounds. Generally, floating leaves contain an assortment of flavonoids, whereas submersed leaves often exhibit reduced flavonoid profiles. In strictly submersed (homophyllous) species, two patterns occur.

View Article and Find Full Text PDF