Publications by authors named "Donald H Burke"

Article Synopsis
  • * While tyrosine kinase inhibitors (TKIs) have improved survival, resistance and disease progression are common, highlighting the need for new treatment options.
  • * Research shows that an anti-EGFR aptamer (EGFRapt) can reduce tumor growth in LUAD cells with specific mutations, offering a promising alternative therapeutic strategy that operates through different mechanisms than current treatments.
View Article and Find Full Text PDF
Article Synopsis
  • The HIV-1 capsid protein (CA) has different structural forms during replication, which have unique surfaces for interactions, but their specific functions are not well understood due to technical challenges in studying CA.
  • Researchers developed CA-targeting aptamers through a branched SELEX approach, identifying subsets that bind specifically either to the CA lattice or the CA hexamer.
  • The study evaluated these aptamers to understand binding mechanisms and showcased their ability to purify CA from cell lysates, highlighting their potential as valuable tools for investigating CA's diverse structures.
View Article and Find Full Text PDF

Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties.

View Article and Find Full Text PDF

The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers.

View Article and Find Full Text PDF
Article Synopsis
  • NAD can be co-transcriptionally inserted into RNA, but this doesn't work well for CoA-linked RNAs due to the scarcity of dpCoA.
  • Researchers found that the enzyme PPAT can utilize RNA transcripts to add 4'-phosphopantetheine, resulting in CoA-RNA formed after transcription.
  • The study highlights that RNAs with specific unpaired nucleotides can act as substrates for PPAT and identifies factors that influence the capping process, suggesting that CoA-RNA production occurs after transcription in bacteria.
View Article and Find Full Text PDF

A significant fraction of non-small cell lung cancer (NSCLC) cases are due to oncogenic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). Anti-EGFR antibodies have shown limited clinical benefit for NSCLC, whereas tyrosine kinase inhibitors (TKIs) are effective, but resistance ultimately occurs. The current landscape suggests that alternative ligands that target wild-type and mutant EGFRs are desirable for targeted therapy or drug delivery development.

View Article and Find Full Text PDF

ystematic volution of igands through ponential enrichment (SELEX) is widely used to identify functional nucleic acids, such as aptamers and ribozymes. Ideally, selective pressure drives the enrichment of sequences that display the function of interest (binding, catalysis, etc.).

View Article and Find Full Text PDF

Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities.

View Article and Find Full Text PDF

Combinatorial selections are powerful strategies for identifying biopolymers with specific biological, biomedical, or chemical characteristics. Unfortunately, most available software tools for high-throughput sequencing analysis have high entrance barriers for many users because they require extensive programming expertise. FASTAptameR 2.

View Article and Find Full Text PDF

The discovery of ribozymes has inspired exploration of RNA's potential to serve as primordial catalysts in a hypothesized RNA world. Modern oxidoreductase enzymes employ differential binding between reduced and oxidized forms of redox cofactors to alter cofactor reduction potential and enhance the enzyme's catalytic capabilities. The utility of differential affinity has been underexplored as a chemical strategy for RNA.

View Article and Find Full Text PDF

Developing rapid, sensitive detection methods for 3,4-Methylenedioxymethylamphetamine (MDMA) is crucial to reduce its current misuse in the world population. With that aim, we developed an aptamer-modified tin nanoparticle (SnNP)-based nanoarchitecture as an electrochemical sensor in this study. This platform exhibited a high electron transfer rate with enhanced conductivity arising from its large surface area in comparison to the bare electrode.

View Article and Find Full Text PDF

Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord.

View Article and Find Full Text PDF

Evasion of immune destruction is a major hallmark of cancer. Recent US Food and Drug Administration (FDA) approvals of various immunomodulating therapies underline the important role that reprogramming the immune system can play in combating this disease. However, a wide range of side effects still limit the therapeutic potential of immunomodulators, suggesting a need for more precise reagents with negligible off-target and on-target/off-tumor effects.

View Article and Find Full Text PDF

The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces.

View Article and Find Full Text PDF

Nucleic acid aptamers can be chemically modified to enhance function, but modifying previously selected aptamers can have nontrivial structural and functional consequences. We present a reselection strategy to evaluate the impact of several modifications on preexisting aptamer pools. RNA aptamer libraries with affinity to HIV-1 reverse transcriptase (RT) were retranscribed with 2'-F, 2'-OMe, or 2'-NH pyrimidines and subjected to three additional selection cycles.

View Article and Find Full Text PDF

Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors.

View Article and Find Full Text PDF

Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance.

View Article and Find Full Text PDF

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood.

View Article and Find Full Text PDF

Recently reported HIV-1 capsid (CA) inhibitors GS-CA1 and GS-6207 (an analog of GS-CA1) are first-in-class compounds with long-acting potential. Reportedly, both compounds have greater potency than currently approved anti-HIV drugs. Due to the limited access to experimental data and the compounds themselves, a detailed mechanism of their inhibition is yet to be delineated.

View Article and Find Full Text PDF

Recent advances in synthetic biology have led to the development of nucleic acid polymers with backbone structures distinct from those found in nature, termed xeno-nucleic acids (XNAs). Several unique properties of XNAs make them attractive as nucleic acid therapeutics, most notably their high resistance to serum nucleases and ability to form Watson-Crick base pairing with DNA and RNA. The ability of XNAs to induce immune responses has not been investigated.

View Article and Find Full Text PDF

: The oligomerization of HIV-1 integrase onto DNA is not well understood. Here we show that HIV-1 integrase binds the DNA in biphasic (high-affinity and low-affinity) modes. For HIV-1 subtype B, the high-affinity mode is ∼100-fold greater than the low-affinity mode (Kd.

View Article and Find Full Text PDF

Aptamer selections often yield distinct subpopulations, each with unique phenotypes that can be leveraged for specialized applications. Although most selections aim to attain ever higher specificity, we sought to identify aptamers that recognize increasingly divergent primate lentiviral reverse transcriptases (RTs). We hypothesized that aptamer subpopulations in libraries pre-enriched against a single RT may exhibit broad-spectrum binding and inhibition, and we devised a multiplexed poly-target selection to elicit those phenotypes against a panel of primate lentiviral RTs.

View Article and Find Full Text PDF

Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs.

View Article and Find Full Text PDF

Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells.

View Article and Find Full Text PDF

Over the past decades there have been exciting and rapid developments of highly specific molecules to bind cancer antigens that are overexpressed on the surfaces of malignant cells. Nanomedicine aims to exploit these ligands to generate nanoscale platforms for targeted cancer therapy, and to do so with negligible off-target effects. Aptamers are structured nucleic acids that bind to defined molecular targets ranging from small molecules and proteins to whole cells or viruses.

View Article and Find Full Text PDF