Cornell energy-recovery linac (ERL) beamlines will have higher power density and higher fractional coherence than those available at third-generation sources; therefore the capability of a monochromator for ERL beamlines has to be studied. A cryogenic Si monochromator is considered in this paper because the perfect atomic structure of Si crystal is needed to deliver highly coherent radiation. Since neither the total heat load nor the power density alone can determine the severity of crystal deformation, a metric called modified linear power density is used to gauge the thermal deformation.
View Article and Find Full Text PDFInterpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2010
Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image.
View Article and Find Full Text PDFA pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10(13) photons s(-1) using a sagittal-focusing double-crystal monochromator and a bimorph mirror.
View Article and Find Full Text PDFTransmission X-ray mirrors have been fabricated from 300-400 nm-thick low-stress silicon nitride windows of size 0.6 mm x 85 mm. The windows act as a high-pass energy filter at grazing incidence in an X-ray beam for the beam transmitted through the window.
View Article and Find Full Text PDFAlmost half of the X-ray beamlines at the Cornell High Energy Synchrotron Source (CHESS) are based on multilayer optics. ;Traditional' multilayers with an energy resolution of DeltaE/E approximately 2% are routinely used to deliver X-ray flux enhanced by a factor of 10(2) in comparison with standard Si(111) optics. Sagittal-focusing multilayers with fixed radius provide an additional factor of 10 gain in flux density.
View Article and Find Full Text PDFSingle-bounce hollow glass capillaries with ellipsoidal shapes have been used at the Cornell High Energy Synchrotron Source recently for various microbeam experiments, with focal spot sizes from 12 to 23 microm, divergences from 2 to 8 mrad, intensities up to 450 times the intensities of incident X-rays, and working distances up to 55 mm. Simple formulae are developed in this paper to explain capillary performance given the X-ray source size, capillary dimensions and slope errors. Capillary length is optimized for best focusing performance.
View Article and Find Full Text PDFThere is considerable interest in using superconducting electron linacs with energy recovery as synchrotron radiation sources. Such energy recovery linacs (ERLs) would open new regimes of X-ray science because they are capable of producing ultra-brilliant X-ray beams [>5 x 10(22) photons s(-1) (0.1% bandwidth)(-1) mm(-2) mrad(-2) at 10 keV], maintaining a very small source size ( approximately 3 micro m r.
View Article and Find Full Text PDF