Publications by authors named "Donald Gilden"

Analysis of cells infected by a wide range of herpesviruses has identified numerous virally encoded microRNAs (miRNAs), and several reports suggest that these viral miRNAs are likely to play key roles in several aspects of the herpesvirus life cycle. Here we report the first analysis of human ganglia for the presence of virally encoded miRNAs. Deep sequencing of human trigeminal ganglia latently infected with two pathogenic alphaherpesviruses, herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV), confirmed the expression of five HSV-1 miRNAs, miR-H2 through miR-H6, which had previously been observed in mice latently infected with HSV-1.

View Article and Find Full Text PDF

Simian varicella virus (SVV) causes varicella in primates, becomes latent in ganglionic neurons, and reactivates to produce zoster. SVV produces a cytopathic effect in monkey kidney cells in tissue culture. To study the mechanism by which SVV-infected cells die, we examined markers of apoptosis 24 to 64 h postinfection (hpi).

View Article and Find Full Text PDF

Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in association with a decline in cell-mediated immunity in elderly and immunocompromised individuals, VZV reactivates and causes a wide range of neurologic disease.

View Article and Find Full Text PDF

Using FACS and single cell reverse transcriptase polymerase chain reaction, we examined the cerebrospinal fluid (CSF) IgG VH repertoires from 10 subjects with a clinically isolated demyelinating syndrome (CIS). B and plasma cell repertoires from individual subjects showed similar VH family germline usage, nearly identical levels of post-germinal center somatic hypermutation, and significant overlap in their clonal populations. Repertoires from 7 of 10 CIS subjects demonstrated a biased usage of VH4 and/or VH2 family gene segments in their plasma or B cell repertoires.

View Article and Find Full Text PDF

Primary infection with varicella zoster virus (VZV) causes chickenpox (varicella) after which virus becomes latent in cranial nerve, dorsal root and autonomic ganglia along the entire neuraxis. Virus may later reactivate, causing shingles (zoster), characterized by pain and rash restricted to 1-3 dermatomes. More than 40% of zoster patients over age 60 develop postherpetic neuralgia (PHN), pain that persists for months to years.

View Article and Find Full Text PDF

Varicella zoster virus (VZV) causes varicella (chickenpox), after which virus becomes latent in ganglia along the entire neuraxis. Virus reactivation produces zoster (shingles). Infectious VZV is found in vesicles of patients with zoster and varicella, but virus shed in the absence of disease has not been documented.

View Article and Find Full Text PDF

Five varicella zoster virus (VZV) genes are known to be transcribed in latently infected human ganglia. Transcripts from VZV gene 63, which encodes an immediate early (IE) protein, are the most prevalent and abundant. To obtain a reagent that might facilitate studies of the role of the IE63 protein in latency and reactivation, we selected an IE63-specific Fab fragment from a phage library and used it to prepare a recombinant mouse IgG1 antibody that detects IE63 and functions in Western blot, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assays.

View Article and Find Full Text PDF

Fifty-four patients with herpes zoster were treated with valacyclovir. On treatment days 1, 8, and 15, pain was scored and saliva examined for varicella-zoster virus (VZV) DNA. VZV DNA was found in every patient the day treatment was started and later disappeared in 82%.

View Article and Find Full Text PDF

Fluorescence-activated cell sorting (FACS) analysis of B cell subtypes in 17 CSF samples from 15 patients with clinically-definite MS revealed that CD19+ B cells accounted for 2 to 11% (mean 5%) and CD138+ cells constituted 0 to 5% (mean 2%) of total CSF lymphocytes. Further stratification of CD138+ cells based on expression levels of CD19 showed that CD138+19+ plasma blasts constituted 89+/-2% (mean+/-SE) of the CD138+ cell population (P<0.00001), with more mature plasma cells (CD138+19-) constituting the remaining 11+/-2%.

View Article and Find Full Text PDF

A characteristic feature of the CNS inflammatory response in multiple sclerosis (MS) is the intrathecal synthesis of IgG and the presence of oligoclonal bands. A strong correlation between CD138(+) plasma blast numbers in MS cerebrospinal fluid (CeSF) and intrathecal IgG synthesis suggests that these cells are the major Ab-secreting cell type in MS CeSF. Sequencing of V regions from CD138(+) cells in MS CeSF has revealed somatically mutated and expanded IgG clonotypes consistent with an Ag-targeted response.

View Article and Find Full Text PDF

Multiple neurologic complications may follow the reactivation of varicella-zoster virus (VZV), including herpes zoster (also known as zoster or shingles), postherpetic neuralgia, vasculopathy, myelitis, necrotizing retinitis, and zoster sine herpete (pain without rash). These conditions can be difficult to recognize, especially as several can occur without rash.

View Article and Find Full Text PDF

Real-time immuno-PCR (RT-IPCR) is a powerful technique that combines ELISA with the specificity and sensitivity of PCR. RT-IPCR of phage-displayed peptides exploits the unique physical associations between phenotype (the displayed peptide) and genotype (the encoding DNA) within the same phage particle. Previously, we identified phage peptides specific for recombinant antibodies (rAbs) prepared from clonally expanded plasma cells in multiple sclerosis (MS) cerebrospinal fluid (CSF) and subacute sclerosing panencephalitis (SSPE) brain.

View Article and Find Full Text PDF

SVV infection of primates closely resembles VZV infection of humans. Like VZV, SVV becomes latent in ganglionic neurons. We used this model to study the effect of immunosuppression on varicella reactivation.

View Article and Find Full Text PDF

There are eight human herpesviruses (HHVs). Primary infection by any of the eight viruses, usually occurring in childhood, is either asymptomatic or produces fever and rash of skin or mucous membranes; other organs might be involved on rare occasions. After primary infection, the virus becomes latent in ganglia or lymphoid tissue.

View Article and Find Full Text PDF

In human ganglia latently infected with varicella-zoster virus (VZV), sequence analysis has revealed that five viral genes (VZV genes 21, 29, 62, 63, and 66) are transcribed. However, their comparative prevalence and abundance are unknown. Here, using real-time PCR, we analyzed 28 trigeminal ganglia from 14 humans for RNA corresponding to the five virus genes known to be transcribed in latently infected human ganglia.

View Article and Find Full Text PDF

Infectious and inflammatory diseases of the CNS are often characterized by a robust B-cell response that manifests as increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands. We previously used laser capture microdissection and single-cell PCR to analyze the IgG variable regions of plasma cells from the brain of a patient with subacute sclerosing panencephalitis (SSPE). Five of eight human IgG1 recombinant antibodies (rAbs) derived from SSPE brain plasma cell clones recognized the measles virus (MV) nucleocapsid protein, confirming that the antibody response in SSPE targets primarily the agent causing disease.

View Article and Find Full Text PDF

We describe correlative clinicopathological/virological findings from a simian varicella virus (SVV)-seronegative monkey that developed disseminated varicella 105 days after gamma-irradiation. Twelve other monkeys in the colony were also irradiated, none of which developed varicella. Before irradiation, sera from the monkey that developed disseminated infection and one asymptomatic monkey were available.

View Article and Find Full Text PDF

Increased immunoglobulin G (IgG) and intrathecally produced oligoclonal bands (OGBs) are characteristic of a limited number of inflammatory central nervous system (CNS) diseases and are often directed against the cause of disease. In subacute sclerosing panencephalitis (SSPE), the cause of disease and the target of the oligoclonal response is measles virus (MV). The authors previously showed that clonally expanded populations of CD38+ plasma cells in SSPE brain, the likely source of OGBs, are directed against MV.

View Article and Find Full Text PDF