Publications by authors named "Donald E Humphries"

Oxidative stress has been implicated in many common age-related diseases and is hypothesized to play a role in posttraumatic stress disorder (PTSD)-related neurodegeneration (Miller and Sadeh, 2014). This study examined the influence of the oxidative stress-related genes ALOX 12 and ALOX 15 on the association between PTSD and cortical thickness. Factor analyses were used to identify and compare alternative models of the structure of cortical thickness in a sample of 218 veterans.

View Article and Find Full Text PDF

Background: The corticotropin releasing hormone (CRH) system has been implicated in a variety of anxiety and mood-based symptoms and disorders. CRH receptor-2 (CRHR-2) plays a role in attenuating biological responses to stressful life events and trauma, making the CRHR-2 gene a strong candidate to study in relationship to PTSD.

Methods: The sample was 491 trauma-exposed white non-Hispanic veterans and their cohabitating intimate partners assessed via structured interview for lifetime DSM-IV PTSD; just over 60% met criteria for the disorder.

View Article and Find Full Text PDF

Background: Abnormalities in the gene regulating methylenetetrahydrofolate reductase (MTHFR) are associated with increased homocysteine levels and increased mortality in normal and chronic kidney disease (CKD) populations.

Study Design: Gene association study.

Setting & Participants: This was a substudy of 677 patients from 21 Veterans Affairs medical centers participating in a randomized clinical trial (Homocysteinemia in Kidney and End-Stage Renal Disease [HOST]) of the effect on all-cause mortality of vitamin-induced lowering of plasma homocysteine levels.

View Article and Find Full Text PDF

Interstitial fibroblasts are an integral component of the alveolar wall. These cells produce matrix proteins that maintain the extracellular scaffold of alveolar structures. Emphysema is characterized by airspace enlargement resulting from the loss of alveolar cellularity and matrix.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents.

View Article and Find Full Text PDF

The endothelial glycocalyx is believed to play a major role in microvascular permeability. We tested the hypothesis that specific components of the glycocalyx, via cytoskeletal-mediated signaling, actively participate in barrier regulation. With the use of polymers of arginine and lysine as a model of neutrophil-derived inflammatory cationic proteins, we determined size- and dose-dependent responses of cultured bovine lung microvascular endothelial cell permeability as assessed by transendothelial electrical resistance (TER).

View Article and Find Full Text PDF

Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST).

View Article and Find Full Text PDF

Interleukin (IL)-1beta released after lung injury regulates the production of extracellular matrix components. We found that IL-1beta treatment reduced the rate of elastin gene transcription by 74% in neonatal rat lung fibroblasts. Deletion analysis of the rat elastin promoter detected a cis-acting element located at -118 to -102 bp that strongly bound Sp1 and Sp3 but not nuclear factor (NF)-kappaB.

View Article and Find Full Text PDF