A new model for translational research and drug repositioning has recently been established based on three-way partnerships between public funders, the pharmaceutical industry and academic investigators. Through two pioneering initiatives - one involving the Medical Research Council in the United Kingdom and one involving the National Center for Advancing Translational Sciences of the National Institutes of Health in the United States - new investigations of highly characterized investigational compounds have been funded and are leading to the exploration of known mechanisms in new disease areas. This model has been extended beyond these first two initiatives.
View Article and Find Full Text PDFRepurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer's Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson's Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases.
View Article and Find Full Text PDFThe pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment.
View Article and Find Full Text PDFWe have identified novel estrogen receptor alpha (ERalpha) antagonists using both cell-based and computer-based virtual screening strategies. A mammalian two-hybrid screen was used to select compounds that disrupt the interaction between the ERalpha ligand binding domain (LBD) and the coactivator SRC-3. A virtual screen was designed to select compounds that fit onto the LxxLL peptide-binding surface of the receptor, based on the X-ray crystal structure of the ERalpha LBD complexed with a LxxLL peptide.
View Article and Find Full Text PDFThe ability of estrogens to produce rapid changes in cellular function has been firmly established. The question remains whether these changes are mediated by a modified form of the nuclear estrogen receptor (ER) that is associated with the plasma membrane (mER) or by a completely novel membrane receptor. Therefore, we characterized the biochemical properties of the nuclear and membrane-associated ERs expressed endogenously in a rat hypothalamic endothelial cell line (D12).
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
August 2003
The binding of ligand to a nuclear receptor causes conformational changes that can result in coactivator or corepressor recruitment and subsequent regulation of transcription. Several peptides have previously been identified that bind to the liganded estrogen receptor (ER). One interacting peptide, pepalphaII, was used in the present studies to assess the ability of ligands to induce spatial changes within both the full-length human estrogen receptor alpha (ER-alpha) and a truncated receptor containing the ligand-binding domain (LBD).
View Article and Find Full Text PDFThe discovery of a second estrogen receptor (ER), called ERbeta, in 1996 sparked intense interest within the scientific community to discover its role in mediating estrogen action. However, despite more than 6 yr of research into the function of this receptor, its physiological role in mediating estrogen action remains unclear and controversial. We have developed a series of highly selective agonists for ERbeta and have characterized their activity in several clinically relevant rodent models of human disease.
View Article and Find Full Text PDFUpon fertilization, remodeling of condensed maternal and paternal gamete DNA occurs to form the diploid genome. In Xenopus laevis, nucleoplasmin 2 (NPM2) decondenses sperm DNA in vitro. To study chromatin remodeling in vivo, we isolated mammalian NPM2 orthologs.
View Article and Find Full Text PDFMicroarrays comprise an efficient approach to discovering large numbers of differentially expressed mRNA transcripts in the CNS resulting from changes in hormonal milieu. We used high-density oligonucleotide microarrays to examine the short- and long-term actions of estradiol (E(2)) on the transcriptomes from the medial basal hypothalamus and other brain regions of E(2)-treated (10 microg) adult female mice. Our results have revealed several unanticipated gene regulations.
View Article and Find Full Text PDFThe glycoprotein hormones (LH, FSH, and TSH) are critical to the maintenance of physiological homeostasis and control of reproduction. However, despite an obvious utility for synthetic pharmacological agents, there are few reports of selective, nonpeptide agonists or antagonists to receptors for these hormones. We have identified and characterized a novel synthetic molecule capable of inhibiting the action of FSH.
View Article and Find Full Text PDFEstrogens and selective estrogen receptor modulators are used for the treatment and prevention of conditions resulting from menopause. Since estrogens exert their activity by binding to nuclear receptors, there is intense interest in developing new ligands for the two known estrogen receptor subtypes, ER-alpha and ER-beta. Characterization assays used to profile new estrogen receptor ligands often utilize receptors from different species, with the assumption that they behave identically.
View Article and Find Full Text PDF