Despite considerable progress in developing vaccines and antivirals to combat COVID-19, the rapid mutations of the SARS-CoV-2 genome have limited the durability and efficacy of the current vaccines and therapeutic interventions. Hence, it necessitates the development of novel therapeutic approaches or repurposing existing drugs that target either viral life cycle, host factors, or both. Here, we report that SRX3177, a potent triple-activity CDK4/6-PI3K-BET inhibitor, blocks replication of the SARS-CoV-2 Omicron variant with IC values at sub-micromolar concentrations without any impact on the cell proliferation of Calu-3 cells at and below its IC concentration.
View Article and Find Full Text PDFTo combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.
View Article and Find Full Text PDFA sensitive and selective liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of dual PI3K/BRD4 inhibitor SF2523 in mouse plasma. The analysis was performed on a UPLC system connected to a Shimadzu 8060 mass spectrometer by electrospray ionization in positive multiple reaction monitoring mode. Chromatographic separation was carried out on an ACE Excel C column with a gradient elution containing 0.
View Article and Find Full Text PDFThe PI3K/Akt pathway-and in particular PI3Kδ-is known for its role in drug resistant B-cell acute lymphoblastic leukemia (B-ALL) and it is often upregulated in refractory or relapsed B-ALL. Myc proteins are transcription factors responsible for transcribing pro-proliferative genes and c-Myc is often overexpressed in cancers. The chromatin regulator BRD4 is required for expression of c-Myc in hematologic malignancies including B-ALL.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma and one of the most challenging blood cancers to combat due to frequent relapse after treatment. Here, we developed the first-in-class BTK/PI3K/BRD4 axis inhibitor SRX3262, which simultaneously blocks three interrelated MCL driver pathways - BTK, PI3K-AKT-mTOR and MYC. SRX3262 concomitantly binds to BTK, PI3K, and BRD4, exhibits potent and activity against MCL, and overcomes the Ibrutinib resistance resulting from the BTK-C481S mutation.
View Article and Find Full Text PDFUnlabelled: Pathogenic viruses like SARS-CoV-2 and HIV hijack the host molecular machinery to establish infection and survival in infected cells. This has led the scientific community to explore the molecular mechanisms by which SARS-CoV-2 infects host cells, establishes productive infection, and causes life-threatening pathophysiology. Very few targeted therapeutics for COVID-19 currently exist, such as remdesivir.
View Article and Find Full Text PDFEwing sarcoma (ES) is the second most common pediatric bone cancer. Despite recent advances in the treatment, patients with metastatic tumors have dismal prognosis and hence novel therapies are urgently needed to combat this cancer. A recent study has shown that phosphoinositide-3 kinase (PI3K) inhibitors can synergistically increase sensitivity to bromodomain and extraterminal domain inhibitors in ES cells and therefore combined inhibition of PI3K and bromodomain and extraterminal domain bromodomain proteins might provide benefit in this cancer.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) is a viral disease caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the respiratory system of infected individuals. COVID-19 spreads between humans through respiratory droplets produced when an infected person coughs or sneezes. The COVID-19 outbreak originated in Wuhan, China at the end of 2019.
View Article and Find Full Text PDFNeuroblastoma are pediatric, extracranial malignancies showing alarming survival prognosis outcomes due to their resilience to current aggressive treatment regimens, including chemotherapies with cisplatin (CDDP) provided in the first line of therapy regimens. Metabolic deregulation supports tumor cell survival in drug-treated conditions. However, metabolic pathways underlying cisplatin-resistance are least studied in neuroblastoma.
View Article and Find Full Text PDFDevelopment of small molecule compounds that target several cancer drivers has shown great therapeutic potential. Here, we developed a new generation of highly potent thienopyranone (TP)-based inhibitors for the BET bromodomains (BDs) of the transcriptional regulator BRD4 that have the ability to simultaneously bind to phosphatidylinositol-3 kinase (PI3K) and/or cyclin-dependent kinases 4/6 (CDK4/6). Analysis of the crystal structures of the complexes, NMR titration experiments and IC measurements reveal the molecular basis underlying the inhibitory effects and selectivity of these compounds toward BDs of BRD4.
View Article and Find Full Text PDFMacrophages (MΦ) play a critical role in tumor growth, immunosuppression, and inhibition of adaptive immune responses in cancer. Hence, targeting signaling pathways in MΦs that promote tumor immunosuppression will provide therapeutic benefit. PI3Kγ has been recently established by our group and others as a novel immuno-oncology target.
View Article and Find Full Text PDFDysregulation of the seven-transmembrane (7TM) receptor Smoothened (SMO) and other components of the Hedgehog (Hh) signaling pathway contributes to the development of cancers including basal cell carcinoma (BCC) and medulloblastoma (MB). However, SMO-specific antagonists produced mixed results in clinical trials, marked by limited efficacy and high rate of acquired resistance in tumors. Here we discovered that Nilotinib, an approved inhibitor of several kinases, possesses an anti-Hh activity, at clinically achievable concentrations, due to direct binding to SMO and inhibition of SMO signaling.
View Article and Find Full Text PDFBone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors.
View Article and Find Full Text PDFMacrophages (MΘs) are key immune infiltrates in solid tumors and serve as major drivers behind tumor growth, immune suppression, and inhibition of adaptive immune responses in the tumor microenvironment (TME). Bromodomain and extraterminal (BET) protein, BRD4, which binds to acetylated lysine on histone tails, has recently been reported to promote gene transcription of proinflammatory cytokines but has rarely been explored for its role in IL4-driven MΘ transcriptional programming and MΘ-mediated immunosuppression in the TME. Herein, we report that BET bromodomain inhibitor, JQ1, blocks association of BRD4 with promoters of arginase and other IL4-driven MΘ genes, which promote immunosuppression in TME.
View Article and Find Full Text PDFCancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies.
View Article and Find Full Text PDFVascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions.
View Article and Find Full Text PDFIn this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy.
View Article and Find Full Text PDFNeuroblastoma (NB) is the most common extracranial solid tumor in children. Our previous studies showed that the angiogenic integrin αβ was increased in high-risk metastatic (stage 4) NB compared with localized neuroblastomas. Herein, we show that integrin αβ was expressed on 68% of microvessels in MYCN-amplified stage 3 neuroblastomas, but only on 34% (means) in MYCN-non-amplified tumors ( < 0.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis.
View Article and Find Full Text PDFMany side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S) that has a serine residue at this position.
View Article and Find Full Text PDF