Biclustering is a powerful tool for exploratory data analysis in domains such as social networking, data reduction, and differential gene expression studies. Topological learning identifies connected regions that are difficult to find using other traditional clustering methods and produces a graphical representation. Therefore, to improve the quality of biclustering and module extraction, this work combines the adaptive resonance theory (ART)-based methods of biclustering ARTMAP (BARTMAP) and topological ART (TopoART), to produce TopoBARTMAP.
View Article and Find Full Text PDFAlthough deep learning has been applied to the recognition of diseases and drugs in electronic health records and the biomedical literature, relatively little study has been devoted to the utility of deep learning for the recognition of signs and symptoms. The recognition of signs and symptoms is critical to the success of deep phenotyping and precision medicine. We have developed a named entity recognition model that uses deep learning to identify text spans containing neurological signs and symptoms and then maps these text spans to the clinical concepts of a neuro-ontology.
View Article and Find Full Text PDFToday Artificial Intelligence (AI) supports difficult decisions about policy, health, and our personal lives. The AI algorithms we develop and deploy to make sense of information, are informed by data, and based on models that capture and use pertinent details of the population or phenomenon being analyzed. For any application area, more importantly in precision medicine which directly impacts human lives, the data upon which algorithms are run must be procured, cleaned, and organized well to assure reliable and interpretable results, and to assure that they do not perpetrate or amplify human prejudices.
View Article and Find Full Text PDFArtificial neural networks (ANNs), such as the convolutional neural network (CNN) and long short-term memory (LSTM), have high complexity and contain large numbers of parameters. Memristor-based neural networks, which have the ability of in-memory and parallel computing, are therefore proposed to accelerate the operations of ANNs. In this paper, a memristor-based hardware realization of long short-term memory (LSTM) network with in situ training is presented.
View Article and Find Full Text PDFA moral crisis has swept through the United States dividing social, political, and religious organizations with corrupt and ineffectual leadership. However, the present moral crisis has its roots in the technological and cultural shifts of the last half century. The goal of interfaith dialogue is not merely to exchange pleasantries, but to build a mutual collaboration addressing the moral and ethical issues with a unified voice.
View Article and Find Full Text PDFThis editorial summarizes selected key contributions of Prof. Stephen Grossberg and describes the papers in this 80th birthday special issue in his honor. His productivity, creativity, and vision would each be enough to mark a scientist of the first caliber.
View Article and Find Full Text PDFClustering has been used extensively in the analysis of high-throughput messenger RNA (mRNA) expression profiling with microarrays. Furthermore, clustering has proven elemental in microRNA expression profiling, which demonstrates enormous promise in the areas of cancer diagnosis and treatment, gene function identification, therapy development and drug testing, and genetic regulatory network inference. However, such a practice is inherently limited due to the existence of many uncorrelated genes with respect to sample or condition clustering, or many unrelated samples or conditions with respect to gene clustering.
View Article and Find Full Text PDF