Publications by authors named "Donald C Rogness"

WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214.

View Article and Find Full Text PDF

Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis.

View Article and Find Full Text PDF

N-Unsubstituted β-lactams react with a molecule of aryne by insertion into the amide bond to form a 2,3-dihydroquinolin-4-one, which subsequently reacts with another molecule of aryne to form an acridone by extrusion of a molecule of ethylene. 2,3-Dihydroquinolin-4-ones react under the same reaction conditions to afford identical results. This is the first example of ethylene extrusion in aryne chemistry.

View Article and Find Full Text PDF

The 1H-indazole skeleton can be constructed by a [3 + 2] annulation approach from arynes and hydrazones. Under different reaction conditions, both N-tosylhydrazones and N-aryl/alkylhydrazones can be used to afford a variety of indazoles. The former reaction affords 3-substituted indazoles either via in situ generated diazo compounds or through an annulation/elimination process.

View Article and Find Full Text PDF

Pyrido[1,2-a]indoles are known as medicinally and pharmaceutically important compounds, but there is a lack of efficient methods for their synthesis. We report a convenient and efficient route to these privileged structures starting from easily accessible 2-substituted pyridines and aryne precursors. A small library of compounds has been synthesized utilizing the developed method, affording variously substituted pyrido[1,2-a]indoles in moderate to good yields.

View Article and Find Full Text PDF

N-Arylisatins are efficiently prepared by the reaction of 2-oxo-2-(arylamino)acetates and arynes under mild reaction conditions.

View Article and Find Full Text PDF

The reaction of 2-aminoaryl ketones and arynes generated by the treatment of various o-(trimethylsilyl)aryl triflates with CsF results in [4 + 2] annulation to afford substituted acridines in good yields.

View Article and Find Full Text PDF

The reaction of methyl indole-2-carboxylates and arynes affords a very efficient, high yielding synthesis of a novel indole-indolone ring system, which tolerates considerable functionality, is broad in scope and proceeds under mild reaction conditions.

View Article and Find Full Text PDF