RAS is a common driver of cancer that was considered undruggable for decades. Recent advances have enabled the development of RAS inhibitors, but the efficacy of these inhibitors remains limited by resistance. Here, we developed a pan-RAS inhibitor, ADT-007, that binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis.
View Article and Find Full Text PDFEfforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models.
View Article and Find Full Text PDFUnlabelled: Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RAS cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007.
View Article and Find Full Text PDFThe role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 β-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells.
View Article and Find Full Text PDFMutations in the three RAS oncogenes are present in approximately 30% of all human cancers that drive tumor growth and metastasis by aberrant activation of RAS-mediated signaling. Despite the well-established role of RAS in tumorigenesis, past efforts to develop small molecule inhibitors have failed for various reasons leading many to consider RAS as "undruggable." Advances over the past decade with KRAS(G12C) mutation-specific inhibitors have culminated in the first FDA-approved RAS drug, sotorasib.
View Article and Find Full Text PDFST6Gal-I, an enzyme upregulated in numerous malignancies, adds α2-6-linked sialic acids to select membrane receptors, thereby modulating receptor signaling and cell phenotype. In this study, we investigated ST6Gal-I's role in epithelial to mesenchymal transition (EMT) using the Suit2 pancreatic cancer cell line, which has low endogenous ST6Gal-I and limited metastatic potential, along with two metastatic Suit2-derived subclones, S2-013 and S2-LM7AA, which have upregulated ST6Gal-I. RNA-Seq results suggested that the metastatic subclones had greater activation of EMT-related gene networks than parental Suit2 cells, and forced overexpression of ST6Gal-I in the Suit2 line was sufficient to activate EMT pathways.
View Article and Find Full Text PDFApproximately 30% of human cancers harbor a gain-in-function mutation in the RAS gene, resulting in constitutive activation of the RAS protein to stimulate downstream signaling, including the RAS-mitogen activated protein kinase pathway that drives cancer cells to proliferate and metastasize. RAS-driven oncogenesis also promotes immune evasion by increasing the expression of programmed cell death ligand-1, reducing the expression of major histocompatibility complex molecules that present antigens to T-lymphocytes and altering the expression of cytokines that promote the differentiation and accumulation of immune suppressive cell types such as myeloid-derived suppressor cells, regulatory T-cells, and cancer-associated fibroblasts. Together, these changes lead to an immune suppressive tumor microenvironment that impedes T-cell activation and infiltration and promotes the outgrowth and metastasis of tumor cells.
View Article and Find Full Text PDFBreast cancers are divided into subtypes with different prognoses and treatment responses based on global differences in gene expression. Luminal breast cancer gene expression and proliferation are driven by estrogen receptor alpha, and targeting this transcription factor is the most effective therapy for this subtype. By contrast, it remains unclear which transcription factors drive the gene expression signature that defines basal-like triple-negative breast cancer, and there are no targeted therapies approved to treat this aggressive subtype.
View Article and Find Full Text PDFAlthough numerous reports conclude that nonsteroidal anti-inflammatory drugs (NSAIDs) have anticancer activity, this common drug class is not recommended for long-term use because of potentially fatal toxicities from cyclooxygenase (COX) inhibition. Studies suggest the mechanism responsible for the anticancer activity of the NSAID sulindac is unrelated to COX inhibition but instead involves an off-target, phosphodiesterase (PDE). Thus, it might be feasible develop safer and more efficacious drugs for cancer indications by targeting PDE5 and PDE10, which are overexpressed in various tumors and essential for cancer cell growth.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with an extremely poor prognosis. There is an urgent need to identify new therapeutic targets and also understand the mechanism of PDAC progression that leads to aggressiveness of the disease. To find therapeutic targets, we analyzed data related to PDAC transcriptome sequencing and found overexpression of the de novo purine metabolic enzyme phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS).
View Article and Find Full Text PDFBackground: The Wnt/β-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models.
Methods: Human ovarian cancer cells were treated with WNT974 .
Histone deacetylase (HDAC) inhibitors impair tumor cell proliferation and alter gene expression. However, the impact of these changes on anti-tumor immunity is poorly understood. Here, we showed that the class I HDAC inhibitor, entinostat (ENT), promoted the expression of immune-modulatory molecules, including MHCII, costimulatory ligands, and chemokines on murine breast tumor cells in vitro and in vivo.
View Article and Find Full Text PDFBackground: Targeted Radioimmunotherapy (RIT) is an attractive approach to selectively localize therapeutic radionuclides to malignant cells within primary and metastatic tumors while sparing normal tissues from the effects of radiation. Many human malignancies express B7-H3 on the tumor cell surface, while expression on the majority of normal tissues is limited, presenting B7-H3 as a candidate target for RIT. This review provides an overview of the general principles of targeted RIT and discusses publications that have used radiolabeled B7-H3-targeted antibodies for RIT of cancer in preclinical or clinical studies.
View Article and Find Full Text PDFBackground: Ovarian cancer is poorly immunogenic; however, increased major histocompatibility complex class II (MHCII) expression correlates with improved immune response and prolonged survival in patients with ovarian cancer. The authors previously demonstrated that the histone deacetylase inhibitor entinostat increases MHCII expression on ovarian cancer cells. In the current study, they evaluated whether entinostat treatment and resultant MHCII expression would enhance beneficial immune responses and impair tumor growth in mice with ovarian cancer.
View Article and Find Full Text PDFBiomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry.
View Article and Find Full Text PDFThe expression of MHC class II molecules (MHCII) on tumor cells correlates with survival and responsiveness to immunotherapy. However, the mechanisms underlying these observations are poorly defined. Using a murine breast tumor line, we showed that MHCII-expressing tumors grew more slowly than controls and recruited more functional CD4 and CD8 T cells.
View Article and Find Full Text PDFWnt/β-catenin signaling is upregulated in triple-negative breast cancer (TNBC) compared to other breast cancer subtypes and normal tissues. Current Wnt/β-catenin inhibitors, such as niclosamide, target the pathway nonspecifically and exhibit poor pharmacokinetics/pharmacodynamics in vivo. Niclosamide targets other pathways, including mTOR, STAT3 and Notch.
View Article and Find Full Text PDFPatients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC.
View Article and Find Full Text PDFIn this issue of , Green et al identified an innovative and promising pretargeted radioimmunotherapy (RIT) approach for the treatment of non-Hodgkin lymphoma (NHL) and multiple myeloma. Pretargeted RIT of B-cell malignancies with a CD38 bispecific monoclonal antibody (mAb) is a novel approach, and the results achieved in preclinical models are very impressive. CD38 is an excellent target because it has high density and stable expression in multiple myeloma and NHL.
View Article and Find Full Text PDF