Publications by authors named "Donald B McPhail"

Excessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson's disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches.

View Article and Find Full Text PDF

To characterize parameters influencing the antioxidant activity at interfaces a novel ESR approach was developed, which facilitates the investigation of the reaction stoichiometry of antioxidants towards stable radicals. To relate the activity of antioxidants towards the location of radicals at interfaces NMR experiments were conducted. Micellar solutions of SDS, Brij and CTAB were used to model interfaces of different chemical nature.

View Article and Find Full Text PDF

The flavonol myricetin, reacts with oxygen-centred galvinoxyl radicals 28 times faster than d-alpha-tocopherol (vitamin E), the main lipid-soluble antioxidant in biological membranes. Moreover, each myricetin molecule reduces twice as many such radicals as vitamin E. However, myricetin fails to protect vitamin E-deficient microsomes from lipid peroxidation as assessed by the formation of thiobarbituric acid reactive substances (TBARS).

View Article and Find Full Text PDF

There is current interest in the use of naturally occurring flavonoids as antioxidants for the preservation of foods and the prevention of diseases such as atherosclerosis and cancers. To establish the molecular characteristics required for maximum antioxidant activity, electron spin resonance (ESR) spectroscopy has been used to determine the stoichiometry and kinetics of the hydrogen-donating ability of 15 flavonoids and d-alpha-tocopherol to galvinoxyl, a resonance-stabilized, sterically protected aryloxyl radical. The second-order reaction rates, which will be governed by O-H bond dissociation energies, were myricetin > morin > quercetin > fisetin approximately catechin > kaempferol approximately luteolin > rutin > d-alpha-tocopherol > taxifolin > tamarixetin > myricetin 3',4',5'-trimethyl ether > datiscetin > galangin > hesperitin approximately apigenin.

View Article and Find Full Text PDF