We demonstrate the ability of a multimode fiber probe to provide two-photon fluorescence (TPF) imaging feedback that guides the femtosecond laser ablation (FLA) in biological samples for highly selective modifications. We implement the system through the propagation of high power femtosecond pulses through a graded-index (GRIN) multimode fiber and we investigate the limitations posed by the high laser peak intensities required for laser ablation. We demonstrate that the GRIN fiber probe can deliver laser intensities up to 1.
View Article and Find Full Text PDFWe performed near-diffraction limited two-photon fluorescence (TPF) imaging through a lensless, multicore-fiber (MCF) endoscope utilizing digital phase conjugation. The phase conjugation technique is compatible with commercially available MCFs with high core density. We demonstrate focusing of ultrashort pulses through an MCF and show that the method allows for resolution that is not limited by the MCF core spacing.
View Article and Find Full Text PDFThe use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization.
View Article and Find Full Text PDFWe perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections.
View Article and Find Full Text PDFWe demonstrate enhanced three-dimensional photoacoustic imaging behind a scattering material by increasing the fluence in the ultrasound transducer focus. We enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium serves as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude.
View Article and Find Full Text PDFMultimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports.
View Article and Find Full Text PDFWe present multi-color image projection through highly scattering media for image formation without need of reconstruction. We overcome the fundamental limitations to the transmission of visual information imposed by multiple scattering phenomena via multi-parametric adaptive wavefront modulation that takes into account the scattering properties of the medium. In order to evaluate the wavefront modulation required for a specific image formation we implement a global optimization via a genetic algorithm.
View Article and Find Full Text PDFWe introduce genetic algorithms (GA) for wavefront control to focus light through highly scattering media. We theoretically and experimentally compare GAs to existing phase control algorithms and show that GAs are particularly advantageous in low signal-to-noise environments.
View Article and Find Full Text PDFWe introduce a phase-control holographic technique to characterize scattering media with the purpose of focusing light through it. The system generates computer-generated holograms implemented via a deformable mirror device (DMD) based on micro-electro-mechanical technology. The DMD can be updated at high data rates, enabling high speed wavefront measurements using the transmission matrix method.
View Article and Find Full Text PDFWe demonstrate an integrated holographic optical tweezers system with double-helix point spread function (DH-PSF) imaging for high precision three-dimensional multi-particle tracking. The tweezers system allows for the creation and control of multiple optical traps in three-dimensions, while the DH-PSF allows for high precision, 3D, multiple-particle tracking in a wide field. The integrated system is suitable for particles emitting/scattering either coherent or incoherent light and is easily adaptable to existing holographic tweezers systems.
View Article and Find Full Text PDF