The purpose of this study was to develop and evaluate a framework to support automated standardized testing and analysis of Cone Beam Computed Tomography (CBCT) image quality QA across multiple institutions. A survey was conducted among the participating institutions to understand the variability of the CBCT QA practices. A commercial, automated software platform was validated by seven institutions participating in a consortium dedicated to automated quality assurance.
View Article and Find Full Text PDFTo create a comprehensive dataset of peripheral dose (PD) measurements from a new generation of linear accelerators with and without the presence of a newly designed fetal shield, PD measurements were performed to evaluate the effects of depth, field size, distance from the field edge, collimator angle, and beam modi-fiers for common treatment protocols and modalities. A custom fetal lead shield was designed and made for our department that allows external beam treatments from multiple angles while minimizing the need to adjust the shield during patient treatments. PD measurements were acquired for a comprehensive series of static fields on a stack of Solid Water.
View Article and Find Full Text PDFPurpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder.
View Article and Find Full Text PDFPurpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions.
Methods: An aperture-based metric ("edge penalty") was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area.
Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials.
View Article and Find Full Text PDFThe dosimetric performance of a direct-detection active matrix flat panel dosimeter (AMFPD) is reported for intensity modulated radiation therapy (IMRT) measurements. The AMFPD consists of a-Si : H photodiodes and thin-film transistors deposited on a glass substrate with no overlying scintillator screen or metal plate. The device is operated at 0.
View Article and Find Full Text PDFAn a-Si Active Matrix Flat Panel Imager (AMFPI) prototype developed in-house has been modified to function as an in-phantom dosimetry system providing high resolution two-dimensional (2-D) data. This Active Matrix Flat Panel Dosimeter (AMFPD) system can be used as a replacement device for standard in-phantom dosimeters, such as scanning ion chambers in water, or film in solid water. The initial characterization of the device demonstrates a wide dynamic range (up to 160 cGy), a stable calibration curve (less than 1.
View Article and Find Full Text PDF