Publications by authors named "Donal MacKernan"

In this perspective communication, we briefly sketch the current state of computational (bio)material research and discuss possible solutions for the four challenges that have been increasingly identified within this community: (i) the desire to develop a unified framework for testing the consistency of implementation and physical accuracy for newly developed methodologies, (ii) the selection of a standard format that can deal with the diversity of simulation data and at the same time simplifies data storage, data exchange, and data reproduction, (iii) how to deal with the generation, storage, and analysis of massive data, and (iv) the benefits of efficient "core" engines. Expressed viewpoints are the result of discussions between computational stakeholders during a Lorentz center workshop with the prosaic title Workshop on Multi-scale Modeling and are aimed at (i) improving validation, reporting and reproducibility of computational results, (ii) improving data migration between simulation packages and with analysis tools, (iii) popularizing the use of coarse-grained and multi-scale computational tools among non-experts and opening up these modern computational developments to an extended user community.

View Article and Find Full Text PDF

The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure-function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods.

View Article and Find Full Text PDF

pH is a key parameter for technological and biological processes, intimately related to biomolecular charge. As such, it controls biomolecular conformation and intermolecular interactions, for example, protein/RNA stability and folding, enzyme activity, regulation through conformational switches, protein-polyelectrolyte association, and protein-RNA interactions. pH also plays an important role in technological systems in food, brewing, pharma, bioseparations, and biomaterials in general.

View Article and Find Full Text PDF

Flexible proteins are frequently used to link subunits of larger complexes in various contexts, for instance, in the construction of unimolecular sensors used in FRET microscopy, and fusion proteins. How flexible such linkers are can be an important question in the overall design of the complex, and yet sometimes suprisingly difficult to establish. Such difficulties can arise because the actual flexibility of a protein depends significantly on its interactions with the solvent, and when the local environment is a subcellular compartment, even the conditions of the solvent, may not be known.

View Article and Find Full Text PDF