Materials exhibiting aggregation-induced emission (AIE) are both highly emissive in the solid state and prompt a strongly red-shifted emission and should therefore pose as good candidates toward emerging near-infrared (NIR) applications of organic semiconductors (OSCs). Despite this, very few AIE materials have been reported with significant emissivity past 700 nm. In this work, we elucidate the potential of -carborane as an AIE-active component in the design of NIR-emitting OSCs.
View Article and Find Full Text PDFA new species of sparid fish, Acanthopagrus oconnorae, is described based on 11 specimens collected in the shallow (0-1 m depth) mangrove-adjacent sandflats of Thuwal, Saudi Arabia. The new species is distinguished from its congeners by the following combination of characters: second anal-fin spine 12.8%-16.
View Article and Find Full Text PDFModification of the π-conjugated backbone structure of conjugated polyelectrolytes (CPEs) for use as electron injection layers (EILs) in polymer light emitting diodes (PLEDs) has previously brought conflicted results in the literature in terms of device efficiency and turn-on response time. Herein, we determine the energetics at the CPE and the light emitting polymer (LEP) interface as a key factor for PLED device performance. By varying the conjugated backbone structure of both the LEP and CPE, we control the nature of the CPE/LEP interface in terms of optical energy gap offset, interfacial energy level offset, and location of the electron-hole recombination zone.
View Article and Find Full Text PDFWe demonstrate proof-of-concept refractive-index structures with large refractive-index-gradient profiles, using a micro-contact photothermal annealing (μCPA) process to pattern organic/inorganic hybrid materials comprising titanium oxide hydrate within a poly(vinyl alcohol) binder. A significant refractive index modulation of up to Δ ≈ +0.05 can be achieved with μCPA within less than a second of pulsed lamp exposure, which promises the potential for a high throughput fabrication process of photonic structures with a polymer-based system.
View Article and Find Full Text PDFSolution-processed organic field-effect transistors (OFETs) have attracted great interest due to their potential as logic devices for bendable and flexible electronics. In relation to n-channel structures, soluble fullerene semiconductors have been widely studied. However, they have not yet met the essential requirements for commercialization, primarily because of low charge carrier mobility, immature large-scale fabrication processes, and insufficient long-term operational stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
The β-phase, in which the intermonomer torsion angle of a fraction of chain segments approaches ∼180°, is an intriguing conformational microstructure of the widely studied light-emitting polymer poly(9,9-dioctylfluorene) (PFO). Its generation can in turn be used to significantly improve the performance of PFO emission-layer-based light-emitting diodes (LEDs). Here, we report the generation of β-phase chain segments in a copolymer, 90F8:10BT, containing 90% 9,9-dioctylfluorene (F8) and 10% 2,1,3-benzothiadiazole (BT) units and show that significant improvements in performance also ensue for LEDs with β-phase 90F8:10BT emission layers, generalizing the earlier PFO results.
View Article and Find Full Text PDFThe performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency.
View Article and Find Full Text PDFOrganic solar cells based on solution processes have strong advantages over conventional silicon solar cells due to the possible low-cost manufacturing of flexible large-area solar modules at low temperatures. However, the benefit of the low temperature process is diminished by a thermal annealing step at high temperatures (≥200 °C), which cannot be practically applied for typical plastic film substrates with a glass transition temperature lower than 200 °C, for inorganic charge-collecting buffer layers such as zinc oxide (ZnO) in high efficiency inverted-type organic solar cells. Here we demonstrate that novel hybrid electron-collecting buffer layers with a particular nano-crater morphology, which are prepared by a low-temperature (150 °C) thermal annealing process of ZnO precursor films containing poly(2-ethyl-2-oxazoline) (PEOz), can deliver a high efficiency (12.
View Article and Find Full Text PDFEasily processed, well-defined, and hierarchical uniform artificial architectures with intrinsic strong crystalline emission properties are necessary for a range of light-emitting optoelectronic devices. Herein, we designed and prepared ordered supramolecular spherulites, comprising planar conformational molecules as primary structures and multiple hydrogen bonds as physical cross-links. Compared with serious aggregation-induced fluorescence quenching (up to 70%), these highly ordered architectures exhibited unique and robust crystalline emission with a high PLQY of 55%, which was much higher than those of other terfluorenes.
View Article and Find Full Text PDFControlling chain behavior through smart molecular design provides the potential to develop ultrastable and efficient deep-blue light-emitting conjugated polymers (LCPs). Herein, a novel supramolecular self-encapsulation strategy is proposed to construct a robust ultrastable conjugated polydiarylfluorene (PHDPF-Cz) via precisely preventing excitons from interchain cross-transfer/coupling and contamination from external trace H O/O . PHDPF-Cz consists of a mainchain backbone where the diphenyl groups localize at the 9-position as steric bulk moieties, and carbazole (Cz) units localize at the 4-position as supramolecular π-stacked synthon with the dual functionalities of self-assembly capability and hole-transport facility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2018
We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO gate dielectric and a hybrid multilayer channel consisting of the heterojunction InO/ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm/(V s)) with appreciable current on/off ratios (≈10) and an external quantum efficiency of 2 × 10% at 700 cd/m. The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.
View Article and Find Full Text PDFThree triple bond-conjugated naphthalene diimide (NDI) copolymers, poly{[ N, N'-bis(2-R)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-[(2,5-bis(2-R)-1,4-phenylene)bis(ethyn-2,1-diyl)]} (PNDIR-R), were synthesized via Sonogashira coupling polymerization with varying alkyl side chains at the nitrogen atoms of the imide ring and 2,5-positions of the 1,4-diethynylbenzene moiety. Considering their identical polymer backbone structures, the side chains were found to have a strong influence on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO) chain at the 2,5-positions of 1,4-diethynylbenzene, P(NDIOD-HO), exhibited the highest electron mobility of 0.
View Article and Find Full Text PDFWe report a novel approach to achieve deep-blue, high-efficiency, and long-lived solution-processed polymer light-emitting diodes (PLEDs) via a simple molecular level conformation change of an emissive conjugated polymer. We introduce rigid β-phase segments into a 95% fluorene-5% arylamine copolymer emissive layer. The arylamine moieties at low density act as efficient exciton formation sites in PLEDs, whereas the conformational change alters the nature of the dominant luminescence from a broad, charge transfer like emission to a significantly blue-shifted and highly vibronically structured excitonic emission.
View Article and Find Full Text PDFWe demonstrate a systematic visualization of the unique photophysical and fluorescence anisotropic properties of polyfluorene coplanar conformation (β-conformation) using time-resolved scanning confocal fluorescence imaging (FLIM) and fluorescence anisotropy imaging microscopy (FAIM) measurements. We observe inhomogeneous morphologies and fluorescence decay profiles at various micrometer-sized regions within all types of polyfluorene β-conformational spin-coated films. Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) and poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF) β-domains both have shorter lifetime than those of the glassy conformation for the longer effective conjugated length and rigid chain structures.
View Article and Find Full Text PDFControl of the hierarchical molecular organization of polydiarylfluorenes by synthetic strategies is significant for optimizing photophysical properties as well as the performance of light-emitting devices. Herein, for the suppression of molecular aggregation and enhancement of luminescence efficiency, a series of steric units were introduced into polydiarylfluorenes by copolymerization, with the aim of integrating the advantages of the steric-hindrance effect and of the β-phase. Optical and Raman spectroscopies revealed a β-phase conformation for a polymer copolymerized with spiro[fluorene-9,9'-xanthene] (SFX), with photoluminescence (PL) peaks at 454, 482, and 517 nm.
View Article and Find Full Text PDFExploring long-range electron transport across protein assemblies is a central interest in both the fundamental research of biological processes and the emerging field of bioelectronics. This work examines the use of serum-albumin-based freestanding mats as macroscopic electron mediators in bioelectronic devices. In particular, this study focuses on how doping the protein mat with hemin improves charge-transport.
View Article and Find Full Text PDFIn order to investigate the solid-state light emission of zinc salphen macrocycle complexes, 7 dinuclear zinc salphen macrocycle complexes (1-7), with acetate or hexanoate coligands, are synthesized. The complexes are stable in air up to 300 °C, as shown via thermogravimetric analysis (TGA), and exhibit green to orange-red emission in solution (λ = 550-600 nm, PLQE ≤ 1%) and slightly enhanced yellow to orange-red emission in the solid state (λ = 570-625 nm, PLQE = 1-5%). Complexes 1, 2, 4, 5, and 7 also display aggregation-induced enhanced emission (AIEE) when hexane (a nonsolvent) is added to a chloroform solution of the complexes, with complex 4 displaying a 75-fold increase in peak emission intensity upon aggregation (in 0.
View Article and Find Full Text PDFHere we demonstrate deep red light-sensing all-polymer phototransistors with bulk heterojunction layers of poly[4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)). The device performances were investigated by varying the incident light intensity of the deep red light (675 nm), while the signal amplification capability was examined by changing the gate and drain voltages. The result showed that the present all-polymer phototransistors exhibited higher photoresponsivity (∼14 A/W) and better on/off photoswitching characteristics than the devices with the pristine polymers under illumination with the deep red light.
View Article and Find Full Text PDFHigh power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C-butyric acid methyl ester (PC[70]BM).
View Article and Find Full Text PDFPoly(9,9-dioctylfluorene) (PFO) is a widely studied blue-emitting conjugated polymer, the optoelectronic properties of which are strongly affected by the presence of a well-defined chain-extended "β-phase" conformational isomer. In this study, optical and Raman spectroscopy are used to systematically investigate the properties of PFO thin films featuring a varied fraction of β-phase chain segments. Results show that the photoluminescence quantum efficiency (PLQE) of PFO films is highly sensitive to both the β-phase fraction and the method by which it was induced.
View Article and Find Full Text PDFAchievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PCBM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF.
View Article and Find Full Text PDFThe unique electronic structures of heteroatomic conjugated polymers (HCPs) offer an attractive platform to tune optoelectronic properties via a supramolecular coordination strategy. This study reports on an sp nitrogen heteroatom containing fluorene-based copolymer namely poly(9,9-dioctylfluorene-co-9,9-dioctyldiazafluoren-2,7-yl) (PF8-co-DAF8), with ≈20% DAF8 units. Tuning the optoelectronic properties of PF8-co-DAF8 via supramolecular coordination with a Lewis acid (B(C F ) or AlCl ) is explored.
View Article and Find Full Text PDFSolution-crystallization is studied for two polyfluorene polymers possessing different side-chain structures. Thermal analysis and temperature-dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X-ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar-zigzag chain conformation termed the β-phase, which is observed for certain linear-side-chain polyfluorenes, is necessary for the formation of so-called polymer-solvent compounds for these polymers.
View Article and Find Full Text PDFA novel supramolecular system comprising a complex of 9,9'-diphenyl-9,9'-2,2'-bifluorene-9,9'-diol (DPFOH) with poly(methyl methacrylate) (PMMA) is presented as an attractive system for optical gain in the ultraviolet. The analogue compound 9,9'-diphenyl-9,9'-2,2'-bifluorene (DPFO8) without an -OH substituent was synthesized alongside DPFOH to confirm the importance of its chemical structure to the thin-film microstructure. A hydrogen-bonding interaction allows the molecule such as DPFOH and a combination of DPFOH and PMMA to have an excellent solution-processed high quality coating film.
View Article and Find Full Text PDFFree-standing serum-albumin mats can transport protons over millimetre length-scales. The results of photoinduced proton transfer and voltage-driven proton-conductivity measurements, together with temperature-dependent and isotope-effect studies, suggest that oxo-amino-acids of the protein serum albumin play a major role in the translocation of protons via an "over-the-barrier" hopping mechanism. The use of proton-conducting protein mats opens new possibilities for bioelectronic interfaces.
View Article and Find Full Text PDF