The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2.
View Article and Find Full Text PDFRNA interference (RNAi) mediated by small interfering RNAs (siRNAs) is a powerful new tool for analyzing gene knockdown phenotypes in living mammalian cells. To facilitate large-scale, high-throughput functional genomics studies using RNAi, we have developed a microarray-based technology for highly parallel analysis. Specifically, siRNAs in a transfection matrix were first arrayed on glass slides, overlaid with a monolayer of adherent cells, incubated to allow reverse transfection, and assessed for the effects of gene silencing by digital image analysis at a single cell level.
View Article and Find Full Text PDFChromosomal region 13q21-q22 harbors a putative breast cancer susceptibility gene and has been implicated as a common site for somatic deletions in a variety of malignant tumors. We have built a complete physical clone contig for a region between D13S1308 and AFM220YE9 based on 18 yeast artificial chromosome and 81 bacterial artificial chromosome (BAC) clones linked together by 22 genetic markers and 61 other sequence tagged sites. Combining data from 47 sequenced BACs (as of June 2001), we have assembled in silico an integrated 5.
View Article and Find Full Text PDF