Publications by authors named "Don W Cleveland"

Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models.

View Article and Find Full Text PDF

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain.

View Article and Find Full Text PDF

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain.

View Article and Find Full Text PDF

Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology.

View Article and Find Full Text PDF

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells.

View Article and Find Full Text PDF

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD.

View Article and Find Full Text PDF

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the gene encoding huntingtin. Prior reports have established a correlation between CAG expanded and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear.

View Article and Find Full Text PDF

Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment.

View Article and Find Full Text PDF

Biomolecular condensates are proposed to cause diseases, such as cancer and neurodegeneration, by concentrating proteins at abnormal subcellular loci. Imaging-based compound screens have been used to identify small molecules that reverse or promote biomolecular condensates. However, limitations of conventional imaging-based methods restrict the screening scale.

View Article and Find Full Text PDF
Article Synopsis
  • Large-genome bacteriophages (jumbo phages) have a protective nuclear-like compartment that shields their genetic material from the host's defense systems, such as restriction enzymes and CRISPR/Cas nucleases.
  • The phage must transport mRNA out of this compartment for protein synthesis and bring in proteins for DNA replication and mRNA transcription.
  • A key protein identified, Chimallin C (ChmC), binds RNA and helps stabilize phage mRNAs, facilitating their movement through the nuclear shell to support successful phage infection.
View Article and Find Full Text PDF

Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s), is an ubiquitous mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis or DNA metabolism that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell.

View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) are short synthetic nucleic acids that recognize and bind to complementary RNA to modulate gene expression. It is well established that single-stranded, phosphorothioate-modified ASOs enter cells independent of carrier molecules, primarily via endocytic pathways, but that only a small portion of internalized ASO is released into the cytosol and/or nucleus, rendering the majority of ASO inaccessible to the targeted RNA. Identifying pathways that can increase the available ASO pool is valuable as a research tool and therapeutically.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with several cancers of lymphocytic and epithelial origin. EBV encodes EBNA1, which binds to a cluster of 20 copies of an 18-base-pair palindromic sequence in the EBV genome. EBNA1 also associates with host chromosomes at non-sequence-specific sites, thereby enabling viral persistence.

View Article and Find Full Text PDF

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in pre-mRNA.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.

View Article and Find Full Text PDF

Hexanucleotide GC repeat expansions in the gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity.

View Article and Find Full Text PDF

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1.

View Article and Find Full Text PDF

Mutations in FUS, an RNA-binding protein involved in multiple steps of RNA metabolism, are associated with the most severe forms of amyotrophic lateral sclerosis (ALS). Accumulation of cytoplasmic FUS is likely to be a major culprit in the toxicity of FUS mutations. Thus, preventing cytoplasmic mislocalization of the FUS protein may represent a valuable therapeutic strategy.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how changes in the number or structure of chromosomes can lead to cancer in mice.
  • Researchers used a special technique to create random chromosome changes, which helped develop aggressive T-cell lymphomas.
  • They found that certain chromosome changes happened early in tumor development, and different ways of causing chromosome changes led to similar cancer results.
View Article and Find Full Text PDF

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid.

View Article and Find Full Text PDF

An aneuploid-immune paradox encompasses somatic copy-number alterations (SCNAs), unleashing a cytotoxic response in experimental precancer systems, while conversely being associated with immune suppression and cytotoxic-cell depletion in human tumors, especially head and neck cancer (HNSC). We present evidence from patient samples and cell lines that alterations in chromosome dosage contribute to an immune hot-to-cold switch during human papillomavirus-negative (HPV) head and neck tumorigenesis. Overall SCNA (aneuploidy) level was associated with increased CD3 and CD8 T cell microenvironments in precancer (mostly CD3, linked to trisomy and aneuploidy), but with T cell-deficient tumors.

View Article and Find Full Text PDF

Objective: There is a critical need to establish genetic markers that explain the complex phenotypes and pathogenicity of ALS. This study identified a polymorphism in the Stathmin-2 gene and investigated its association with sporadic ALS (sALS) disease risk, age-of onset and survival duration.

Methods: The candidate CA repeat was systematically analyzed using PCR, Sanger sequencing and high throughput capillary separation for genotyping.

View Article and Find Full Text PDF

Micronuclei are small membrane-bounded compartments with a DNA content encapsulated by a nuclear envelope and spatially separated from the primary nucleus. Micronuclei have long been linked to chromosome instability, genome rearrangements, and mutagenesis. They are frequently found in cancers, during senescence, and after genotoxic stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkk8kvg9vp68o1p3cs158v3hbkhduugs7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once