Annu Int Conf IEEE Eng Med Biol Soc
July 2018
This paper describes the effects of a novel functional electrical stimulation (FES) system which has been integrated in a powered exoskeleton to provide up to 10 channels of stimulation to users with paraplegia via surface electrodes. Experimental data collected from three users with spinal cord injury (SCI) indicate the system reduced the exoskeleton motor torques necessary to perform sit-to-stand transitions in the exoskeleton. All subjects exhibited reduced muscle spasticity immediately after walking in the exoskeleton with FES.
View Article and Find Full Text PDFIEEE ASME Trans Mechatron
September 2014
This paper presents the design of an anthropomorphic prosthetic hand that incorporates four motor units in a unique configuration to explicitly provide both precision and conformal grasp capability. The paper describes the design of the hand prosthesis, and additionally describes the design of an embedded control system located in the palm of the hand that enables self-contained control of hand movement. Following the design description, the paper provides experimental characterizations of hand performance, including digit force capability, bandwidth of digit movement, physical properties such as size and mass, and electrical power measurements during activities of daily living.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
This paper describes a walking controller implemented on a powered ankle prosthesis prototype and assessed by a below-knee amputee subject on a treadmill at three speeds. The walking controller is a finite state machine which emulates a series of passive impedance functions at the joint in order to reproduce the behavior of a healthy joint. The assessments performed demonstrate the ability of the powered prosthesis prototype and walking controller to reproduce essential biomechanical aspects (i.
View Article and Find Full Text PDF