Publications by authors named "Don E Canfield"

Aerobic processes require oxygen, and anaerobic processes are typically hindered by it. In many places in the global ocean, oxygen is completely removed at mid-water depths forming anoxic oxygen minimum zones (A-OMZs). Within the oxygen gradients linking oxygenated waters with A-OMZs, there is a transition from aerobic to anaerobic microbial processes.

View Article and Find Full Text PDF

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels.

View Article and Find Full Text PDF

Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions.

View Article and Find Full Text PDF

Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth's early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth's early biosphere providing energy to drive microbial growth and evolution over billions of years.

View Article and Find Full Text PDF

Unlabelled: A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile.

View Article and Find Full Text PDF

We investigated anammox, denitrification and dissimilatory reduction of nitrite to ammonium (DNRA) activity in the Eastern Tropical South Pacific oxygen minimum zone (OMZ) off northern Chile, at high-depth resolution through the oxycline into the anoxic OMZ core. This was accompanied by high-resolution nutrient and oxygen profiles to link changes in nitrogen transformation rates to physicochemical characteristics of the water column. Denitrification was detected at most depths, but anammox was the most active N2 -producing process, while DNRA was not detectable.

View Article and Find Full Text PDF

Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure.

View Article and Find Full Text PDF

Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate.

View Article and Find Full Text PDF

Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between approximately 2.45 and 2.

View Article and Find Full Text PDF

Because animals require oxygen, an increase in late-Neoproterozoic oxygen concentrations has been suggested as a stimulus for their evolution. The iron content of deep-sea sediments shows that the deep ocean was anoxic and ferruginous before and during the Gaskiers glaciation 580 million years ago and that it became oxic afterward. The first known members of the Ediacara biota arose shortly after the Gaskiers glaciation, suggesting a causal link between their evolution and this oxygenation event.

View Article and Find Full Text PDF
Early anaerobic metabolisms.

Philos Trans R Soc Lond B Biol Sci

October 2006

Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs.

View Article and Find Full Text PDF